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PREFACE 

This project was conducted to demonstrate a quick-response capability to monitor crisis 
situations using commercial satellite imagery. The requirement for such a capability 
became evident during the Persian Gulf War; particularly, the need for monitoring the path 
of the oil spill coming from oil dumped in the bay near Kuwait City. The Coast Guard's 
SLAR-based AIREYE sensor is usually deployed to major global oil spills. However, this 
system would have been too risky to operate because of the nature of the hostile 
environment. 

The project was conducted during the period of January to July 1991. The most intense 
effort was made in the frrst two weeks of February 1991 during the war, in response to 
requests from the USACE Army Cold Regions Research and Engineering Laboratory and 
the Corps of Engineers Emergency Operation Center to monitor the Persian Gulf oil spill. 

This was a laboratory effort initially involving TEes Research Institute (RI), Space 
Programs Laboratory (SPL), and the Geographic Sciences Laboratory (GSL) to conduct 
the quick-response demonstration. Subsequently, TEes Topographic Developments 
Laboratory (TDL) joined the effort, helping to formulate and demonstrate an improVed 
quick-response capability via the prototype Quick Response Multicolor Printer (QRMP). 
Additional effort was also made by SPL to better characterize the performance of the semi
automated classifiers using the remotely sensed images. 

The authors were the TEC team that conducted the quick-response demonstration. In 
addition, a special acknowledgement is made to Francis A. Ward, Chief, Graphic Systems 
Development Branch, who provided valuable support in formulating and demonstrating the 
improved quick-response hard copy capability. 

The Space Programs Laboratory work was conducted under the supervision of Mr. Donald 
J. Skala, Chief, Exploratory Technology Branch; Mr. James E. Stilwell, Chief, Space 
Technology Division; and Dr. Joseph J. Del Vecchio, Director, Space Programs 
Laboratory. The Research Institute work was conducted under the supervision of Dr. Jack 
N. Rinker, Chief, Remote Sensing Division; and Mr. John V.E. Hansen, Director 
Research Institute. The Geographic Sciences Laboratory work was conducted under the 
supervision of Mr. Paul G. Logan, Chief, Data Base Development Branch; Mr. Douglas 
Caldwell, Chief, Terrain Analysis and Data Generation Division; and Mr. Bruce K. Opitz, 
Director, Geographic Sciences Laboratory. The Topographic Developments Laboratory 
work was conducted under the supervision of Mr. Francis A Ward, Chief, Graphic 
Systems Development Branch; and Mr. Regis J. Orsinger, Director, Topographic 
Developments Laboratory. 

Mr. Walter E. Boge was Director, and Colonel Kenneth C. Kessler was Commander and 
Deputy Director of the U.S. Army Topographic Engineer Center at the time of publication 
of this report. 
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METHODS OF MONITORING 
THE PERSIAN GULF OIL SPILL 

USING DIGITAL AND HARDCOPY MULTIBAND DATA 

1.0 INTRODUCTION 

1.1 Objective 

The purpose of this effort was to demonstrate a quick response Corps of Engineers 
capability to detect and identify oil spills using commercial multiband satellite imagery, 
such as the Advanced Very High Resolution Radiometer (A VHRR) and Landsat Thematic 
Mapper (Landsat TM). The digital processing and analysis procedures needed to perform 
this task were to be identified, as well as the methodology for producing hardcopy 
products. 

1.2 Background 

A Remote Sensing team was assembled at the U.S. Army Topographic Engineering Center . 
(TEe), comprised of members from TEes Research Institute (RI), Space Programs 
Laboratory (SPL), and Geographic Sciences Laboratory (GSL), as a quick response to 
requests from the U.S. Cold Regions Research and Engineering Laboratory (CRREL) and 
the Corps of Engineers Emergency Operation Center to monitor the Persian Gulf oil spill 
(January-March 1991). Members ofRI acquired the necessary image data, performed 
much of the visual image interpretation, and maintained a liaison among the various 
agencies. Members of SPL processed the data on the Space Research Test Facility, 
Multiband Image Processing System (SRTFIMBIPS), performing data screening, image 
classification (segmentation), and data reformatting for hardcopy processing. Members of 
GSL provided the quick-response hardcopy processing and output using the 
llES/ERDAS, the electrostatic plotter, and the bubble jet copier. 

Subsequently, SPL characterized in more detail the performance of the semi-automated 
image classifiers. Also, the Topographic Developments Laboratory (TDL) also worked 
with SPL in formulating and testing an alternate hardcopy production methodology utilizing 
the Quick Response Multicolor Printer (QRMP) prototype. 

Imagery from two commercial satellite sensors was used; (1) the Advanced Very High 
Resolution Radiometer (A VHRR), and (2) the Landsat Thematic Mapper (Landsat TM). 
The A VHRR sensor generates data with 100bit precision, 5 spectral bands, and pixels 
having an Instantaneous Field of View (IFOV) of 1.1 km. There are numerous satellites 
carrying this sensor. The spectral band widths vary according to the satellite and are listed 
in Table 1 (Section 2). Although the spatial resolution was a major disadvantage, the 
revisit cycle of a few times per day was a big advantage. 

The Landsat TM sensor generates data with 8-bit precision, 7 spectral bands, and pixels 
having an IFOV of approximately 30 meters for all bands except Band 6, which has an 
IFOVof 120 meters. There are currently two Landsat satellites, each with a revisit cycle of 
16 days. Typically, the revisit is once every 16 days, corresponding to a single satellite. 
However, if the two satellites are tasked to collect data over the same target in response to a 
time sensitive event, then the revisit time can be reduced to 8 days. The spectral bands are 
listed in Table 2 (Section 2.2). 

1 



1.3 Scope 

The oil spill monitoring was accomplished using both A VHRR and Landsat TM imagery. 
The first scene processed was a 30 January 1991 Landsat TM image. The team members 
found no oil in this scene. Members later confirmed that the oil spill was actually to the 
north of the acquired scene. Because Landsat TM data could only be acquired every 8 
days at best, a decision was made to acquire and analyze A VHRR data that was available 
for multiple times a day. A total of 16 scenes was processed on the SRTFIMBIPS 
covering the period between 16 January to 8 February 199. However, since 11 of the 
scenes were found to contain clouds over the region of interest, only 5 cloud-free A VHRR 
scenes were used in the analysis. Two additional Landsat scenes, taken on 8 February and 
16 February, were subsequently processed and analyzed as they became available. 
Eventually, the main region of interest became the coastal waters near the Manifah Oil 
Fields, and the coastal towns of Jaziratal Batinah and AI Jubayl, Saudi Arabia. 

This effort had essentially two aspects: Digital Processing and Analysis, and Hardcopy 
Product Support. Both manual and semi-automated digital processing techniques were 
used and are discussed in Section 2.0. Numerical results of the classification runs are 
presented in Section 3.0. Two methodologies of hardcopy production support were used, 
and are discussed in Section 4.0. Appendix A contains an example of the current status of 
Methodology II's capability. It should also be noted that all the photographs in this report 
were generated using the QRMP-protot~ under Methodology II. Appendix B contains 
spectral curves of new and aged oil, as well as class statistics for the training sites used for 
the supervised classification algorithms. Appendix C contains processing-related data. 

2 



PROCESSING ME'I1IODI AND ANALYSIS 

2.0 PROCESSING METHODS AND ANALYSIS 

The Land Analysis System (lAS) software on the SRTFIMBIPS was used for the digital 
processing and analysis. This included inputing the data from 9-track tape, screening the 
data by displaying multiple band combinations of each scene, remapping 100bit data to 8-bit 
A VHRR data, enhancing the image data, co-registering A VHRR scenes, and segmenting 
the A VHRR and Landsat image data using a number of alternative classifiers. The outpum 
from this processing included remapped subscenes suitable for hardcopy output; class 
maps of subscenes portraying oil, land, and water features; and oil area coverage estimates 
using the class map resulm. 

2.1 A VHRR Processing and Analysis 

A special purpose routine was used to input the A VHRR data. 1 The program enabled easy 
input of the 5-bandllO-bit data as multiband image data. Because of the nature of im 
acquisition, some of the scenes were found to have a north-to-south orientation, and others 
had a south-to-north orientation. Therefore, a routine2 was used to rotate the south-to
north scenes by 180 degrees. A smaller subscene containing the major portion of the 
Persian Gulf and coastal areas was generated for each of the five scenes. 

The resulting five subscenes of A VHRR imagery were remapped from 100bit data to 8-bit 
data by using a routine to generate multiband histograms,3 manually identifying stretch 
points, and then using another routine4 to perform a piecewise linear stretch. Table Cl in 
Appendix C lists the five names of the subscenes used and the corresponding mappin~. 

The five A VHRR subscenes were co-registered to each other by identifying tiepoinm and 
and applying them in a sequence of registration-related routines.s Upon completion, all 
co-registration was achieved to an acceptable level (less than one pixel) with a translation 
and rotation transformation. The A VOI24.MORN8 subscene was used as the base scene 
for which the other four subscenes were registered. During the registration process, these 
four subscenes were resampled using a bilinear interpolation option. As listed in Table C2, 
the names of these subscenes were given an additional "R" suffix (e.g. A VOI16.NOON8 
-> AV0116.NOON8R). 

The co-reglStered subscenes were also saved as a ~ magnification for easy display and 
comparison. The magnified images were resampled using cubic convolution. As listed in 
Table C2, the names of these subscenes were given a "C" suffix (e.g. AV0116.NOON8R 
-> A V0116.NOON8C). 

Each of the bands was visually analyzed by the team members. Based on the spectral band 
widths, listed in Table 1, and the thermal properties of oil as compared to water, it was 

1 LAS Routine LACIN. 
2 LAS Routi~ FLIP. 
3 LAS Routine PIXCOUNT. 
4 LAS RoutilJe MAP. 
S LAS Routines COORDEDT, TlEMERGE, NULLCORR, TlEFIT, and GEOM. A lingle prognm called 
REGISTER can generally replace the functions of llEMERGE, NUUCORR, TIEFIT, and GEOM; bowe\'er, 
instability of the statistical estimating parameten in the defining traosformation required adjustment of the alpha 
ac:c:eptaDce values for a couple of the scenes . This option was not available in REGISTER. 
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PROCESSING ME11IODS AND ANALYSIS 

anticipated that Band 4 or Band 5 (Long Wave/lbermal Infrared) would provide the most 
useful information, but that these would be redundant if used together. The team's 
observations confirmed this. Bands 1, 2, 3 were not useful for oil; although Band 3 
readily showed strong heat sources, such as oil fires. In addition, 3-band color 
combinations were not found any more useful than Band 4. 

Table 1. 

Bagd Ngmber 

Bl 
B2 
B3 
Bot 
B5 

NOAA·AVBRR SeDlOr BaDd Widths 

Satellite 
NOAA 

.', ·1, ·10 
0.58 - 0.68 I'm 

0.725 - 1.10 I'm 
30SS - 3.93 I'm 

10.so - 11,SO I'm 
sameasBaDd4 

Number 
NOAA 

.7, .', ·11, 12, .1, .J 
0.58 - 0.68 I'm 

0.725 - 1.10 I'm 
30SS - 3.93 I'M 

10.30 - 11.30 I'M 
11,SO - 12,SO I'M 

As a consequence of the initial observations, only Band 4 was used for the majority of the 
analysis. Figures 1 to 4 show photos of the A VHRR (Band 4) images. Figure 1, the 
January 16 image, can be used as a refe' ~nce since there is no oil in the scene. Figure 2, 
the January 24 image, is a morning scene. At this time of day, since the oil is cooler than 
the water, it appears as a light snake·like feature ott the coast, located about one·half to 
two-thirds of the way down the scene. Figure 3, the first of the February 1 images, is a 
morning scene. Once again, the oil is cooler than the water and appears as a light snake
like feature off the coast, but further down the scene. Figure 4, the second of the 
February 1 scenes, is an early afternoon scene. At this time of day the oil is heated by the 
s~ becoming hotter than the surrounding water, so it appears as a dark feature against the 
lighter water. 
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Pigllre I. AVHRR (Band 4) - JannaT)1 Hi, 1991 - NOON 



Pigure 2. AVHRR (Band 4) - Janu8..Q 24,1991 - MORN 



- ,. j 

Pigure 3. AVHRR (Band 4) - PebIU8.IJll, 1991 - MORN 



Figure 4_ AVHRR (Band 4) - FebI1l8IJll J 1991 - NOON 



PROCESSING ME11IODS AND ANALYSIS 

2.2 Landsat TM Processing and Analysis 

The Landsat TM band widths are listed in Table 2. Spectral curves of fresh crude oil and 
weathered oil (floating oil, floating crude oil, and oil sludge) are shown in Appendix B. 
Given this information, the following framework can be postulated. Thermal Band 6 
should show a good contrast between the oil and water because of temperature differences. 
Band 5 should show a good contrast between water and weathered oil, but not between 
water and fresh crude oil. Furthermore, along the coastal areas, where Band 1 should 
penetrate the water and scatter the light from underwater features (Le. non-oil should be a 
lighter shade of gray), the oil should remain black. 

Table 2. Landsat Thematic Mapper Bands 

Band Number 
B1 
m 
B3 
B4 
B5 
B7 
B6 

BandWidth 
0.45 - 0.52 I'm 
0.52 - 0.60 I'm 
0.63 - 0.69 I'm 
0.76 - 0.90 I'm 
1.55 - 1.75 I'm 
2.08 - 235 I'm 
10.4 - 12.5 I'm 

Landsat TM data was input using a general-purpose routine for ingesting tapes.6 Usually, 
such data can be read using a special-purpose Landsat-ingest routine; however, the tape 
TEC received had a nonstandard 3-line blocking per record. This nonstandard blocking 
also made it impossible to read the data on other TEC systems. 

Three dates of full-sized Landsat TM imagery were processed, 30 January, 8 February, 
and 16 February 1991 images. The scenes were predominantly water, with land only 
along the northern, western, and southern portions of the images. Each entire scene was 
screened visually using B6, B5, and Bl with emphasis on the northern edge and coastal 
edges, and the water-land boundary. Appropriate subscenes were generated from each 
image. 

No oil was detected by the TEe team on the 30 January scene, and it was subsequently 
confirmed that no oil existed in the area at that time (it was located to the north). The 
team's analysis of the TM image required using several bands. Initially, some false alarms 
were raised as the team focused on some dark-tone linear features in B6, which stretched 
across portions of the scene. However, with the help of Bl, which is sensitive to clouds, 
shadows, and atmospheric scattering these features were deduced to be thin clouds, 
shadows from thin clouds, or wind smoothing of the water. Using a priori spectral 
reflectance curves for new and aged oil (Appendix B), the team analyzed TM bands 1, 4, 5, 
and 7. They determined that previous reports of oil in this vicinity of the gulf were not 
correct and that the oil must still be north of the area covered by the Landsat TM scene. 
This conclusion was subsequently confirmed from the team's analysis of the A VHRR 
imagery and by other governmental agencies monitoring the gulf spill. 

6 LAS Routine IENTER. 
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PRUCESSING METHODS AND ANALYSIS 

Without using the visual bands, the confusion between oil and clouds is easily 
understandable. At times, both oil and clouds have similar thermal contrast with the water, 
and the lineal spatial patterns look amazingly similar to the pattern one would expect for oil. 
However, the situation becomes immediately apparent when incorporating Band 1. This 
band (blue) excels at showing haze along with clouds, both of which have bright responses 
in this band. Of course, oil has a black response in this spectral region. This concludes the 
argument, and eliminates any possible error between cloud patterns and oil. 

Although oil was not present in this scene, a coastal site was selected, and a subscene of 
1200 by 1200 pixels (33.6 by 33.6 km2) was generated using the three multispectral bands 
B6, B5, and Bl (Red, Green, and Blue). Hardcopies of this imagery (generated using 
Methodology I) were produced to provide a control image in case future environmental 
impact studies were needed. 

Oil was easily identified (visually) on the 8 and 16 February scenes using either B5 or B6. 
The oil spill on the 8 February image was present in the extreme northwest comer of the 
TM image, whereas on the 16 February image the oil had moved southward along the coast 
and was found over a large area (the latter is shown in Figures 5 to 1). Subscenes of 1200 
by 1200 pixels containing the oil were generated. These were not co-registered because the 
drift in oil could not be contained within the same 1200- by 1200- pixel area, unless the 
scenes were resampled to a more coarse ground resolution. Such resampling and 
subsequent co-registration for both dates would have been time-consuming, and because of 
other priorities, these tasks were not performed. 

Figures 5, 6, and 7 show photos of the Landsat images for the 16 February scene. 
Figures 5 and 6 illustrate the appearance of oil on Landsat Bands 5 and 6 (near IR and 
thermal). Notice the general agreement in the overall paUern of the oil in these two bands. 
However, there is a difference. B6 responds to temperature and is a useful indicator of the 
thickness of the oil, whereas, B5 seems to be indicating oil along certain shorelines. 

What about this additional oil pattern along the shorelines? In particular, an apparent oil 
pattern can be seen along the western shore of Jaziratal Batinah, north of AI Jubayl (the 
cresent-shaped island in the center-right of image). According to B5, this feature may be 
oil, but it also may be wetland since many of the cove regions along the shoreline show 
about the same intensity response. The question is resolved by incorporating Bl which 
reveals that the areas in dispute are black and therefore oil. Figure 7 is a color composite 
showing the appearance in the three multispectral bands B6, B5, and Bl (Red, Green, and 
Blue). 

Both the 8 and 16 February scenes were used in the classification studies. In addition to 
the two subscenes mentioned above, a larger portion of one of the scenes, 16 February, 
was resampled by a factor of 4 to reduce the size from 4800 by 4800 pixels to 1200 by 
1200 pixels. The effective areal coverage of this scene was (134 by 134 km2). 

10 



PROCESSING ME'I1IODS AND ANALYSIS 

2.3 Classification Trials 

Three classification algorithms were studied for their effectiveness in identifying oil: the 
Euclidean minimum distance classifier, the Bayesian discriminant classifier, and the 
ISODATA clustering method.7 The Euclidean and Bayesian classifiers are supervised 
methods requiring training data. The ISODATA algorithm is an unsupervised method that 
requires no training data; however, its performance can often be enhanced by using a priori 
knowledge to define initial seed clusters. Table 3 describes the different trials in the 
experiment 

The Euclidean minimum distance classifier is simple and computationally fast It is a linear 
classifier, meaning that the decision surfaces are hyperplanes. The decision function is 

2 
gi (x) = -ri (x) == - (x - .... i)' (x - .... i) 

where x is the n dimensional pixel vector being classified, and f1i is the n dimensional mean 

vector for class Wi. The function g; (x) is evaluated for each class, and the pixel is 
assigned to the class with the maximum value of g; (x). 

Trials 2 to 8 were used to test the Euclidean minimum distance classifier as well as to 
determine if a subset of multispectral bands could achieve comparable results to all seven 
bands. This was done on the 16 February landsat image. One variable that affects the 
performance of this classifier is the distance-threshold parameter. Under the MIND 1ST 
implementation, pixel vectors with a distance from each training vector that are greater than 
this threshold distance are assigned to a null class. During Trials 2 to 8 this parameter was 
varied. Selection of the thresholds was based on the class variance for each band using the 
expression 

N 

T=sqrt L~ (r • 0;)2 ] 
, • 1 

where N is the number of bands used in the classification (in this case either 4 or 7), r is a 

tunable parameter, and op· is the class variance for band i. The value is interpreted as r 
times the standard deviation of class i. The value T was used as an initial guess, and then 
refined subjectively to improve the classification. 

The Bayesian classifier is a quadratic algorithm that generates hyperquadric decision 
surfaces (i.e. hyperplanes, hyperspheres, hyperellipsoids, hyperparabloids). Accordingly, 
it is also more complex and computationally slower. From a statistical point of view, the 
algorithm is attractive because it weights the variables, and it accounts for correlation of the 
variables. Under the assumption that class data belong to multivariate normal populations, 
the method is optimal in the sense that it minimizes the probability of classification error. 
The multivariate normal (MVN) assumption allows the distributional properties of each 
class to be completely specified by a mean vector and covariance matrix. Unfortunately, 
violations of the MVN assumption (quite common in practice) and difficulties in estimating 
the class covariance matrices can potentially lead to poor performance. 

7 LAS routines MINDIST. BAYES. and ISOCLASS were used (or the Euclidean minimum distance cla55ifier. 
the Bayesian cla55ifier. and the ISODATA cluslering melhod. respectively. For a more complete discussion o( 
these classifiers than whal is given. see Oaarles W.Therrien. Deci8itM £.,;"'lIIiOll " ... Cl4uijiC4tiOll. New York. 
NY: John Wiley A Sons. 1989. 
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PROCESSING METHODS AND ANALYSIS 

The Bayes classifier appeals to the well-known Bayes Theorem and then uses the logarithm 
of the a posterior probability fW\X( O)ilx) = fXJW<xl O)i) * P( O)i) as the definition of the Bayes 
discriminant function: 

gi (x) = - t * (x - J1i)t:I{1(x - J1i) - t log I :Iii + log P(O)i) + i log 2n 

During this effort the a priori probabilities P( O)i) are set equal and do not contribute to the 
decision. Since the last term is a constant that also does not contribute to the decision, the 
effective Bayes discriminant function used by the software is 

In trials 9 and 10, the Bayesian classifier was tested on 4 bands and 7 bands of Landsat, 
respectively, for the 16 February image. 

In trial 1, the ISOCLASS clustering method was tested on all the Landsat TM bands for the 
February 8 image. Similarly, during Trials 11, 12, and 13, the method was also tested on 
all the A VHRR bands for the 1 and 8 February images (see table 3). 

The ISOCLASS method available under LAS is a slight modification of the well-known 
ISODATA (Iterative Self-Organizing Data Analysis Techniques A) algorithm developed by 
Ball and Hall.8 This algorithm belongs to the category of clustering techniques that seek to 
minimize a specified objective function. 

The ISODATA/ISOCLASS method is an iterative procedure, whereby clusters are 
continually split and merged. Achieving a local minimization of the objective function is 
easy, as it occurs when each of the samples in a data set has been assigned to the nearest 
cluster center. Such a solution is found at each iteration ()f the algorithm. However, a 
unique global solution for the data set cannot be guaranteed. This technique may settle into 
a local rather than global solution (the minimized value of its objective function is not a 
global minimum). The local solution generally depends on the initial starting estimates for 
the seed clusters and specifying different seed points for the initial clusters can produce 
different classification outputs. TIle differences mayor may not be significant, but 
nevertheless a unique solution can never be guaranteed. Further discussion of the 
implementation can be found in an earlier TEC report.9 

Prior to running the classification algorithms, a statistics file was generated for each scene, 
containing mean vectors and covariance matrices for numerous intermediate training 
classes. Eleven intermediate classes were defined for three types of oil (heavy, medium, 
light), three types of water, two types of land, wet cove, wet sand, and clouds. The same 
file was used for both supervised classifiers. and it was also used in one of the ISODATA 
trials (to define initial seed vectors). 1bese eleven classes would subsequently be 
consolidated into seven classes as listed in Section 3.2, Table S, and eventually to three 
classes (oil, water, land) as shown in Section 3.2, Figure 8. 

8 G.H. Ball, and DJ. Hall. Ia0ti4tG, A Novel Method 01 Data AMlys;" IJrwl PIJttem Classi[laItion. Stanford 
Reaeart:b Institute Tecbnical Report, (NTIS AD699616) Stanford, CA. 1965. 
9 Robert S. Rand. A Hybrid Mdhotlology lor Detectillg CIJrtogrtlp/licaUy Sipi[1CIl1tI FeQbIru Usillg Ltut4.SIJI TM 
I",agery. Fort Belvoir, VA: U.S. Topographic Engineer Center, En.-OS89, September 1991. 
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A 3-D scatterplot and further description of the classes is found in Section 3.2, Figure 9. 
The mean vectors and covariance matrices for this training set are listed in Appendix B, 
Tables Bland B2, respectively. Signature plots of the mean vectors of oil (combined) and 
two water classes are shown in Figure B3. 

Table 3. Classification Runs 

TRIAL IMAGE ~I..ASSIEIEB Tl::fE IMAGE SQlIB~E IMAGE BAND 
liL JlAm CQMBINATIQNS 

1 8-Fe~91 ISOCLASS LANDSAT SPILU 1,2,3,4,5,6,7 

2 16-Fe~91 MINDIST LANDSAT On..216X4 1,2,3,4,5,6,7 

3 16-Fe~91 MINDIST LANDSAT On..216X4 1,5,6,7 

4 16-Fe~91 MINDIST LANDSAT On..216X4 1,2,3,4,5,6,7 

5 16-Fe~91 MINDIST LANDSAT On..216X4 1,5,6,7 

6 16-Fe~91 MINDIST LANDSAT On..216X4 1,2,3,4,5,6,7 

7 16-Fe~91 MINDIST LANDSAT On..216X4 1,5,6,7 

8 16-Fe~91 MINDIST LANDSAT On..216X4 1,2,3,4,5,6,7 

9 16-Fe~91 BAYES LANDSAT On..216X4 1,5,6,7 
W = (1 1 1024 1024) 

10 16-Fe~91 BAYES LANDSAT On..216X4 1,2,3,4,5,6,7 
W = (88 88 1024 
1024) 

11 1-Fe~91 ISOCLASS AVHRR AV0201.NOON 1,2,3,4,5 
W = (200,140,70,30) 

12 1-Fe~91 ISOCLASS AVHRR AV0201.NOON 1,2,3,4,5 
W = (200,140,70,40) 

13 8-Fe~91 ISOCLASS AVHRR AV0208.NOON ~,Z.3,4,5 

W = (540,370,40,30) 
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CLASSIFICATION RESULTS 

3.0 CLASSIFICATION RESULTS 

3.1 Oil Coverage Estimates 

The estimates from the classification trials of the oil area coverage are listed in Table 4 and 
illustrated by a class map in Figure 8. Because of the lack of ground truth for this project, 
only a subjective comparison of the performance of the classifiers could be made visually. 
The nature of the problem (moving oil, particularly in a wartime environment) is such that 
ground truth is not likely ever to be available. In fact, a controlled study that delineates 
exact reference locations of moving oil in water is extremely difficult and rather costly to 
implement, even under ideal circumstances.1o However, the nature of the problem (oil in 
water) is also such that most classification errors are easy to identify visually. For 
example, the presence of oil within interior land masses would be an obvious error. 

Table 4. Classification Results 

TRIAL CLASSMAP NAME SIZE THRESHOLDS OIL Connie 
No. (kml) 

1 SPILL2.1SOCLASS 1024 X 1024 17.95 
2 OIUI6X4.MDIST 1200 X 1200 DODC 100.69 
3 OIUI6X4.MDISTI 1200 X 1200 30 for all classes 119.62 
4 OIUI6X4.MDIST3 1200 X 1200 30 for all classes 104.47 
5 OIUI6X4.MDIST4 1200 X 1200 20 for Oil, 30 for others 103.68 
6 OIUI6X4.MDIST5 1200 X 1200 55 for .U classes 117.42 
7 OIUI6X4.MDIST6 1200 X 1200 25 (or Oil, 30 {or others 111.21 
8 OIU16X4.MDIST7 1200 X 1200 35 for Oil, 55 for others 107.40 
9 0ll..216X4.BA YES 1024 X 1024 Uocer1Iin 
10 OIU16X4.BA YES2 1024 X 1024 Uncertain 
11 AV02011S0 70X3O 171.00 
12 AV02011S02 70X40 104.00 
13 AV0208JSO 4OX3O 40.00 

3.2 Classifier Performance 

In general, the Euclidean classifier produced results that were consistent among themselves 
and with visual observations. Trials 7 and 8 produced the best of the minimum distance 
results. Regarding missed oil, very few pixels visually observed as oil were misclassified 
as water. Regarding false alarms, only a handful of pixels visually observed on the land 
were misclassified as oil. The four-band combination Bl, B5, B6, B7, produced 
essentially equivalent results as the seven-band combination. 

The ISOCLASS clustering performed in Trial 1 actually produced better results for this date 
imagery. However, initial optimism was quickly shattered when the algorithm was applied 
to other scenes with very unstable results. For example, a comparison of the oil coverage 
for Trials 11 and 12 using A VHRR data shows a coverage of 171 km2 vs. 104 km2• The 
Trial 11 output drastically overestimated the amount of oil. However, the only 

10 Some studies using passive microwaws have been conduc:led. One such effort is documented in 
James Hollinger, Determi"i"g Oil SpiU TIticJcMu Usi", Pauive Microwaver, Naval Research Laboratory; 1974. 
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distinguishing difference between runs was a slight change in the size of the images from 
70 by 30 pixels to 70 by 40 pixels, which added an additional strip of water. The rationale 
for this behavior is the potential problem of the ISOClASS solution becoming trapped in a 
local minimum and unable to reach the global minimum, as was discussed in Section 2.3. 

The Bayesian discriminant classifier trials generated mysterious results that are difficult to 
interpret. From a theoretical standpoint, the Bayesian approach is preferable over the 
Euclidean distance. The latter is most appropriate if all the variances are equal and the 
variables are independent. The Bayesian method accounts for unequal variances and the 
lack of independence, and it models the size and shape variations in the training class 
distributions. It is also a statistically optimal classifier if the assumed multivariate normality 
of class data is correct (see Section 2.3). Accordingly, the Bayesian classifier should 
provide more accurate results than the Euclidean distance classifier. Generally, the 
experience reported in the literature is in keeping with this expectation and the Bayesian 
classifier is generally viewed as providing better overall results than the Euclidean distance 
classifier. 

In apparent conflict with this rationale, the results of Trials 9 and 10 indicated a far greater 
amount of oil than that of the Euclidean minimum distance classifier or the ISOClASS 
clustering algorithm that could not be confirmed visually. Both Oil H and Oil M had such 
troublesome areas. A post-processing operation was subsequently performed on the 
Bayesian results that relabeled samples outside a specified threshold into an unknown 
class.ll Numerous thresholds were specified; however, the various thresholds had one of 
two effects. Either the detected oil samples remained unchanged or the majority of the 
scene was relabeled as a null class. The four-band combination, Bl, B5, B6, B7, 
produced essentially equivalent results as the seven-band combination for the Bayesian 
classifier and the thresholds. 

Was this detection of additional oil correct or false? During the demonstration, the analysts 
acted cautiously and dismissed the Bayesian results as erroneous. They could not visually 
identify the oil in these apparently extraneous regions using any of the Landsat TM band 
combinations, and although the extraneous Oil M regions had a certain amount of spatial 
structure, much of the extraneous Oil H regions appeared somewhat random. 
Unfortunately, the lack of ground truth made it impossible to reach a definite conclusion. 

If these additional detections were incorrect, a pa;sible explanation lies in the covariance 
structure of the training data. A comparison of the covariance matrices of water as 
compared to oil (listed in Appendix B, along with the mean VectolS) shows that water is a 
tightly defined class as compared to oil. The variances of concern range as follows: 

Water A 
WaterB 
Oil H 
Oil M 
Oil R 

.02 to 

.04 to 

.48 to 

.41 to 

.89 to 

0.64 
2.34 

23.19 
134.83 
58.93 

In partiCUlar, the variances of Water A are likely to be problematic, since they are all less 
than one ( 0.64, 0.26, 0.05, 0.08, 0.02, 0.31, 0.10 for bands 1 to 7, respectively). The 
variances of Water B are not that much better ( 2.34,0.19,0.11,0.22, 0.04, 0.61, 0.25 
bands 1 to 7, respectively). 

11 LAS Routine UNKNOWN. 
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landA WetSand 

landS 

WaterC 

This is one projection of a tbree~imeDSional acatterplot of the training data. Each training set is portrayed u a 
cluster (or cloud of data). Such acatterp10ts allow an analyst to anticipate the cluster shape of the underlying 
population distributions, and also to obeerve any overlap between the clusters. The program that generates Ibis 
plot allows the user to spin the 3-D axis to view the data from any direction. 

Geographically, Water A and Water B are at large dista:lcea from the shoreline aDd presumably in deep water, 
whereas, Water C is an orr-sbore water sample. WetCove is aloog the shoreline in a cove, aDd presumably heavily 
saturated with water. WetSand is located quite a distance inland. 

According to Ibis diagram, each of the classes appean to be separable. Rotating the plot would show that all the 
classes are indeed well separated, even though some. such u WetSand and Land B, appear to be close in Ibis 
projection. 

Figure 9. 3-D Scatterplot Results for Bl, BS, B6. 

If multivariate normality is assumed, then from a statistical viewpoint at least 9S percent of 
the water pixels would vary only a fraction of one gray shade from its class mean. Of 
course, the imagery is quantized to integer values and fractional data do not exisL Since the 
Bayesian classifier assumes multivariate normality and uses the covariance matrix in 
defining a distance metric (the Euclidean distance does not), it is very plausible that this 
classifier could mislabel legitimate water pixels as oil. 

The scatterplot projection shown in Figure 9 also shows a tightly-defined water class and 
broadly-defined oil classes, and in addition, shows these classes to have a close pairwise 
distance as compared to other class pairs. Notice that Oil H contains a couple of apparent 
outliers, which should probably have been reassigned: one to Oil M and the other to Oil R. 
As it is defined (with these two pixels included), the estimate for the covariance of Oil His 
exaggerated, and the modeled distribution is wider than it probably should be. Software 
limitations at the time prevented this issue from being explored further; however, it is being 
researched currently at TEe. Although it is beyond the scope of the effort to elaborate 
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much further, the results indicate that the presence of outliers in a training class can indeed 
greatly exaggerate covariance estimates. This explanation offers another way for water 
pixels to be misclassified as oil. 

Noting these arguments, it is interesting to observe the results of the auto-classification 
trial that was subsequently performed using the Bayesian and Euclidean classifiers. The 
results, as listed in Table 6, show the Bayesian classifier performed flawlessly with 100 
percent accuracy on the prototype data. This is in spite of the suspicious covariance 
structure. However, it is worth mentioning that TEe researchers have noticed this type of 
behavior in other studies.12 Unfortunately, training data can often produce excellent 
autoclassification results, but have serious problems in classifying other portions of a 
scene. 

It would then seem reasonable to conclude that the Bayesian classifier performed poorly on 
this data set. However, a closer look at the Bayes class map revealed that although the 
Oil H regions appeared somewhat random, the Oil M pattern seemed to radiate away from 
the oil identified by the other classification trials. A thin layer of oil would most definitely 
act this way. 

Is it possible that the Bayesian classifier might be detecting a thin sheet of oil otherwise 
invisible -- oil that was not detected using the minimum distance or ISODATA methods, 
and that also was not noticed visually? Although not part of this quick-response effort, 
additional statistical analysis and classification trials were subsequently performed. Results 
from this follow-up analysis showed that combining the Water A and Water B classes 
succeeded in making the class covariance broader with only a minor affect on the class 
means. This action improved the visual appearance of the resulting image classification. 
Most of the troublesome Oil H was replaced as Water. The random patterns vanished 
almost completely. 

However, essentially all of the troublesome Oil M areas remain. Closer visual analysis 
focusing on these areas indicated that indeed there may be something after all that looks like 
oil. These areas have a pattern that would resemble a thin oil sheet. The areas are located 
near the shoreline and the Band 1 pattern is dark, not as black as the known oil areas, but it 
does seems to be obscuring underwater features that should be seen. Since the 
investigators cannot reach a solid conclusion based on visual analysis, perhaps it is not 
surprising the Bayesian algorithm performed as it did. At the very least, it must be said that 
the Bayesian algorithm focused the investigators attention on an area that otherwise would 
have been overlooked. 

Another effort is being conducted to study the effect of modifying the Bayesian algorithm 
by invoking ,'J minimum-variance criterion and chi-squared distance rejection threshold.13 
Initial results are promising. In particular, by invoking a minimum-variance criterion, 
problems of misclassifying water samples as something else are greatly reduced. The chi
squared rejection criteria is proving useful to reduce errors by incorporating a null class; 
thereby allowing samples that were forced into a category by default to be rejected from the 
default class and relabeled as null. Unlike the LAS implementation that was used 
unsuccessfully in this effort, the criteria proposed seems to work without assigning almost 
everything to a null class. 

12 Robert Rand and Donald Davia. irllertlclNe MIlllivtl1'Uue Auly.is TeduIiqIles 10 EztrtId Ntlblral tuttl MtllI-M1l4e 
FetJIIlru frOIIt BrotMl·Btuttl SpecITtI1IJfIIJ,iIt& DtIIIJ. Fort Belvoir, VA:. U.S. Topographic Engineer Center, in 
publication. 
13 Ibid. 
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Table 5. Consolidated Class Conversions 

To asaeaa the actual performaooe for either !be complete soeaea or the auto-dassifJaltioo nms, the origiDI.I eleven 
training classes were consolidated into seven classes as foUows: 

Consolidated Class 

Class 1 = Oil H 
Class 2 = Oil M 
Class 3 = Oil R 
Class 4 = Land 
Class 5 = Wetland 
Class 6 = Warer 
Class 7 = Clouds 

Original Class(s) 

OilH 
OiIM 
OilR 
Land A, Land B 
WetCove, WetSand 
Warer~ WarerB,WarerC 
Clouds 

Table ,. Auto-Classification Results for Seven Bands. 

The Bayeaian discriminant and Euclidean minimum distaooe classifICations were performed using 11 training 
dusea with means and covariaooe as shown in Appendix B. The ltatistic::a were gathered from the prototypes and 
the classification was performed on die same data. After the cIaIIitications were completed. these 11 dusea were 
CIOmbined into 7 dusea as listed in Table 8. Each lOW represents the percentage of class labels aaaigned to each 
training class. Read across (e.g. for the Euclidean reawlS, and for the Oil M prototypes. 81.33~ were clalli6ed 
CIOrrectly; 9.33~ were iDClOrrecdy labeled as Oil H; and 9.33% were iDClOrrectly labeled as Water). 

DA YES CONTINGmi~ RESYLIS -IDiDiulllta = 2i1~16 Rm1Q§7 
Class 1 % 3 .. 5 6 7 

1 100.00 0.00 0.00 0.00 0.00 0.00 0.00 
% 0.00 100.00 0.00 0.00 0.00 0.00 0.00 
3 0.00 0.00 100.00 0.00 0.00 0.00 0.00 
4 0.00 0.00 0.00 100.00 0.00 0.00 0.00 
5 0.00 0.00 0.00 0.00 100.00 0.00 0.00 
6 0.00 0.00 0.00 0.00 0.00 100.00 0.00 
7 0.00 0.00 0.00 0.00 0.00 0.00 100.00 

mz~IDEAN CQN11NGENQI RESYLn - li!iDin& 12111 = 2i1~16 2m!QI7 
Class 1 % 3 .. 5 6 7 

1 '5.77 4.23 0.00 0.00 0.00 0.00 0.00 
% 9.33 11.33 0.00 0.00 0.00 9.33 0.00 
3 0.00 2.17 1'.13 0.00 0.00 8.70 0.00 
4 0.00 0.00 0.00 100.00 0.00 0.00 0.00 
5 0.00 0.00 0.00 3.73 '6.%7 0.00 0.00 , 0.00 0.00 0.00 0.00 0.36 ".64 0.00 
7 0.00 0.00 0.00 0.00 0.00 0.00 100.00 
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IIAJlDCOPY IlEPIlODucnON 

4.0 HARDCOPY REPRODUCTION 

Two methodologies for hardcopy reproduction were used in this effort. Methodology I 
provided an immediate response to the quick-response requirement, and provided a very 
aa::eptable product that was well received in the community. However, it was not the most 
desirable solution, since the process had an extra layer of processing for defining the final 
radiometric adjustments, and the plotter used was best suited for graphic plotting rather 
than photographic printing. Methodology n was subsequently formulated and tested after 
the quick-response requirement was satisfied. 

4.1 Methodology I 

This methodology provided an immediate response to the quick-response requirement. It is 
discussed in the manner it was implemented during the demonstration. 

4.1.1 SceDe ProcesIID. 

Digital scenes for hardcopy processing were subset into 1024 by 1024 blocks on LAS 
using the A VHRR and Landsat TM data depicting the spill as it made landfall in coastal 
Saudi Arabia. The tapes were generated as band-interleaved by line (BIL) composite 
images (rasters) and passed to the Earth Resource Data Analysis (BRDAS) image 
processing system. The ERDAS system is networked via TCPIIP to a SUN Sparcserver 
490. Also configured as a node on the network is a large format (D and E size) Precision 
Image color electrostatic plotter. This plotter was used to aeate graphics at a scale of 
approximately 1:50,000 of the spill area. 

Scenes generated on the LAS were pre-processed using the ERDAS software before 
plotting. The program executed to bring the data into the Sparcserver's disk was "dd" 
under the UNIX operating system. Each raster image was read from tape, and a statistics 
file was generated to collect and preserve the image statistics generated by LAS of the 
original image data sets. Image statistics representing spectral enhancements used for 
hardcopy production were generated using ERDAS.I" This program allows an enhanced 
scaled data set to be written out as a file, and permits the custom application of algebraic 
expressions to multiple or single band files. Since the plotter renders images using cyan, 
magenta, yellow, and black (CMYK) and the 8- bit rasters are stored as red, green, and 
blue (RGB), it was essential that the histogram data be collected and applied to the image 
files as color look-up tables and be output as the digital file to be plotted. Spectral 
enhancements developed and written out as plot files served two purposes: (1) Oil in the 
scene was more obvious after histogram adjustment, particularly where band 1 in TM was 
used, and (2) Resulting hardcopy plots were brighter and were more representative in color 
to the same images on the video display. 

4.1.2 Hardcopy ProdudloD 

The new raster images were examinedlS to check for any anomalies in the data, i.e. pixel 
drop-out, swapped lines and samples, color integrity, etc., before the next phase of 
processing prior to plotting. All lines and samples were determined to be acceptable, and 

t .. ERDAS routine ALGEBRA. 
IS ERDAS routine READ. 

--------_._--._._._-_ ....... - . __ .. " 
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RGB to CMYK conversion was initiated to generate formatted plotfiles to be passed to the 
plotter. To accomplish this, software16 was used to format and place the rasters in PI-CGI 
raster graphics format. In addition, legend, scaling, and boundary options within the 
software allowed customization of the resulting plot files. Some loss of chroma and color 
values took place in a few of the images. This was due mainly to limitations in the 
electrostatic process used for rendering the images. Cartographic plotters are intended 
mainly for line, point, and polygonal data sets - not dense image (photographic-type) data 
sets. Dense rasters, reproduced at 100 to 400 dots per inch, lose some quality and detail 
through resampling and data compression. Additionally, the RGB to CMYK conversion 
can corrupt color values depending on the plotter used, media, humidity, temperature, and 
the mechanical process. 

Thirteen graphics were produced for scenes acquired on the 1st, 8th, and 16th of February 
1991. 'The A VHRR full-resolution scenes covered the entire Persian Gulf region and 
border countries. Scenes generated from Landsat TM were full-resolution mosaics 
covering the eastern border of Kuwait (Mina az Zawr), south of the Manifah oil fields over 
coastal Saudi Ambia to Ra's az Zawr. Each graphic took approximately 25 minutes to plot, 
once the files were pre-processed to place them into PI_CGI formal Plotting time can be 
varied, and it was determined that it was more advantageous to plot slower since the plot 
files were dense raster files greater than 5 megabytes. Plot time variability is determined by 
writing (placing the electrically charged image on the media) and toning (painting the 
charged image with color toner solution). These operations can be done simultaneously for 
faster plotting, or separately for slower plotting. 

Once the original graphics were produced, multiple reduced copies were reproduced using 
two Canon BubbleJet copiers. 

4.2 Methodology II 

Subsequent to Methodology I, a different method for reproducing hardcopy was 
developed that improved the appearance of the images on hardcopy and increased 
annotation flexibility. Since this method also reduced the processing steps and the printing 
time was faster, it should be quicker and less expensive. 

4.1.1 Sceae Processiag 

After the image-screening process is completed on LAS, the scenes of interest are 
transferred via the Ethernet from the LAS to the Macintosh II workstation. Single-band 
gray shade or three-band color combinations can be used. If linear piecewise radiometric 
remappings are desired to improve the visual appearance of the scenes, this operation 
should be applied prior to the transfer. 

Once the transfer is completed, the image data is read and processed by a commercially 
written Macintosh image/photo processing program.17 All the necessary image cropping, 
annotation, and final radiometric adjustment operations are performed interactively with the 
program. The Macintosh II workstation and software used in the process perform 32-bit 
color operations, and therefore provide full true-color supporL TIle resulting digital image 
that the analyst views, prior to hardcopy generation, is exactly what the analyst gets. An 
almost identically-configured system exists as the interface to the Quick-Response 
Multicolor Printer (QRMP) prototype that is used for hardcopy output. 

16 PIMAGE IOftware 

17 Adobe Pbotosbop, Version 2.0. 
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The images are ingested as raw data and converted into their own multichannel format 
Upper limits on the input multichannel image data have not yet been established, although 
2560 pixels by 5632 lines have been successfully manipulated (a 3-channel color 42MB 
file). The presently established upper limit on the output images is a total of 24 MB for a 
multichannel scene. This is not a limitation of the image/photo processing software, but 
rather a memory limitation of the copier, which will soon be resolved by new memory 
boards. 

Once the scene has been processed to the desired level, photographically, two additional 
parameters must be specified. These parameters are the page size and the print density in 
dots-per-inch (dpi). Available page sizes are the standard letter (8.5" by 11" ) and tabloid 
size (11" by 17"). The print density ranges from 72 dpi to 400 dpi. Of course, the 
density setting affects both the scale of the imagery and the size of the image that can be 
printed. For example, at a density of 72 dpi, only an image of 648 by 936 pixels could be 
printed on a 9- by 13- inch area within a tabloid-sized sheet of paper. At 200 dpi, an image 
of 1800 by 2600 pixels could be printed on the same-sized area. 

The file can be saved as a raw data file, a PIer data file, or a program-specific data file. 
However, if one wishes to save the print parameters, the program-specific format should 
be used. The file is then copied to either a 1.4 MB floppy disc, or 45 MB removable 
cartridge, depending on the file size. 

Note that because identical software exists on the QRMP, much of this scene processing 
could be performed directly on the QRMP as well. Convenience and user expertise should 
determine this. 

4.1.1 Hardcopy Produclioa 

As mentioned above, an almost identically-configured system exists as the interfa<% to the 
Quick-Response Multicolor Printer (QRMP) prototype that is used for hardcopy output 
Therefore, the disc file, created by Scene Processing, is read directly into the QRMP 
prototype system. The same program used to create the file is executed, the file is opened, 
and the print command is issued. 

Each of the two QRMP prototypes is a network system presently consisting of a Macintosh 
IIfx, a Raster Input Processor (RIP), a Cannon CLC500 copier/printer, and a Canon 
BubbleJet copier. The Macintosh files are transferred to the RIP, which converts the image 
files into a PostScript file that the CLCSOO printer can interpret. The output of the CLCSOO 
is a letter or tabloid-size photo. These photos are then copied with some magnification 
factor ( Ix to 12x) using the BubbleJet copier. The format of the BubbleJet allows the 
copies to have a maximum size of 20 by 30 inches. 

Noting the original pixel size ( e.g. Landsat TM has a resolution of 28 meters/pixel), the 
print density recorded by the laser printer, and the scale factor introduced by the BubbleJet 
copier, one can determine the scale factor of the resulting hardcopy outpul Typically, one 
determines the scale factor in advan<%, noting the image pixel size and adjusting the print 
density of the printer and the scale factor of the copier accordingly. 
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HARDCOPY REPRODUCTION 

All of the photos in this report were generated using Methodology II. Except for the figure 
in Appendix A, annotation of the photos was given only limited attention, because of the 
limited resources available after the Quick-Response demonstration. Also, to reduce cost, 
only a standard grade of paper was used. The best representation of the capabilities of the 
system is iUustrated in Appendix A, where annotation/graphics was given greater 
emphasis, and a much higher grade of (clay-based) paper was used. 

Update on Productiop Methodology II. Since this effort was completed, a direct 
digital interface from the Macintosh/RIP to the Canon BubbleJet copier/printer was 
established. This will be particularly useful for generating poster-size prints directly from a 
digital file, eliminating the need for the intermediate step of generating a page-size (letter or 
tabloid) print that must be subsequently magnified. 

26 



5.0 CONCLUSIONS 

Oil was identified on both A VHRR and Landsat TM. 1be success in using A VHRR was 
primarily due to the contrast between oil and water in the thermal wavebands, and to the 
massive amounts of concentrated oil. As the oil became dispersed on the later dates, it was 
far more difficult to detect, because its thermal signature became merged with that of the 
coastal features. Much of the oil was missed. However, this same oil was easily identified 
on the Landsat scene of the corresponding date because of the increased spatial resolution. 
Also, automated detection became possible because of additional banck. 

Subsets of the most useful A VHRR and Landsat TM banck for detecting and identifying oil 
were easily determined. The useful A VHRR bands were 84 and 85. Only one of these is 
needed, and the team members used 84. 

The most useful Landsat TM banck were 86, 85, and 81. Although Landsat TM 86 was 
perhaps the most important for conservative oil estimates, 85 possibly indicated additional 
oil near shorelines. The 81 band was essential to eliminate possible confusion between oil 
and wetland, between oil and cloud patterns, as well as between oil and near-shore 
bathymetric features. 

Both manual methods and interactive classification routines were successful in identifying 
the oil. Manual methods served best for screening the data, determining the best band 
combinations, and verifying the actual presence of the oil. Manual interpretation of 
A VHRR was essential because of the limited spatial resolution and the limited number of 
usefuJ spectral banck. 

Interactive routines were useful in generating class maps and providing oil area coverage 
estimates. 1be best conservative estimates were achieved using a simple minimum distance 
classifier with threshold bounck for a null class. A four-band combination, 81, 85, 86, 
87, produced essentially equivalent results as the seVen-band combination. 

The unsupervised ISOCLASS technique produced some successful results; however, it 
was also found to be unstable. Excellent results deteriorated to nonsense with only a small 
change in scene content. 

The results of the 8ayesian discriminant classifier applied to the Lanckat TM scene 
produced results that were difficult to interpret and raised some important issues. Some of 
the difficulty was traceable to tightly-defined water classes ( i.e. very small variances in the 
class covariance matrix), and possibly to prototype outliers in one of the oil classes. 

1bere is the need for software that can adapt to the problems associated with tightly-defined 
classes, and for software that detects and eliminates outliers in training data. These 
problems can often be avoided through skillful selection of training data; however, the 
required talent is probably beyond the level that should be expected of the average user, and 
software should be developed to circumvent these problems. 

Overall, the classification results demonstrated successes and shortcomings that were in 
keeping with those of other studies conducted by TEe researchers evaluating multispectral 
data with different scene content. An ongoing effort is addressing the shortcomin~ for the 
generalized problem (any scene content). 
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A study should be performed that assesses the potential for using Landsat or other spectral 
imaging data along with semi-automated machine algorithms for the specific problem of 
detecting thin layers of oil. The Bayesian classifier might have detected such layers using 
Landsat TM; however, the lack of ground truth available in this effort made it impossible to 
reach any definite conclusion. 

A quick response time of 24 hours was achieved for responding to emergency operations, 
as measured from the moment TEe received the data tapes to completion of hardcopy 
plotter products, and areal oil coverage estimates. Subsequent to the demonstration, a 
methodology utilizing the Quick-Response Multicolor Printer Prototype (QRMP) for 
producing better quality hardcopy products with an equivalent (or better) response time was 
formulated and tested. 

Most of the photos in this report do not fully represent the true capability of Methodology 
II. Because of the limited resources available after the Quick-Response demonstration, 
efforts were directed at printing the scenes in this report with only limited annotation. The 
print quality is also somewhat limited because of paper quality (clay-based paper should be 
used). A more representative sample of the capabilities of the system is illustrated in 
Appendix A Such a photo could easily be enlarged to 20 by 30 inches using the BubbleJet 
copier. 
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APPENDIX B 

Table B1. Mean Vec:ton of the Training Data 

III III IU ~ n B.i B1 
011 B 66.34 20.52 18.11 14.37 49.85 132.66 2337 
Oil M 69.17 21.47 18.20 13.88 31.08 111.49 15.19 
Oil R 68.24 21.22 18.67 12.15 17.17 136.70 12.00 
Land A 135.75 70.08 103.27 89.35 153.27 123.89 105.29 

• LandB 137.63 66.33 92.80 76.01 122.55 126.64 77.70 
Wet Cove 122.40 55.08 70.30 54.91 43.09 11334 17.59 
WetSand 117.54 56.80 81.32 68.41 117.78 128.64 7437 
Water A 65.82 19.43 15.00 8.91 5.00 120.35 3.90 
Water B 85.73 24.90 16.97 9.76 5.96 112.03 4.52 
Water C 142.64 62.83 66.02 24.09 9.72 106.82 5.64 
Cioud 118.55 39.36 40.05 27.05 23.46 79.46 14.55 

The mean vectors for Oil. Water A. and Water C ale plotted in Figu.e B3. 
wbe.e Oil = average of (Oil H. Oil M. and Oil R). 
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Figure B3. Landsat TM-Derived Spectral Curves or Oil and Water. 

35 



APPENDIX B 

Table Bl. CovariaDce Matrices 

on H 
B.l IU IU U IU ILi III 

Bl 1.13 0.75 0.25 -0.21 -4.28 -3.08 -1.84 

B1 0.75 0.41 0.21 -0.08 -1.76 -1.05 -0.69 

B3 0.25 0.21 0.17 0.84 0.33 -0.10 -0.06 

B4 -0.21 -0.08 0.84 1.31 1.91 -0.03 0.29 

B5 -4.28 -1.76 0.33 1.91 13.19 13.39 11.13 

B' -3.08 -1.05 -0.10 -0.03 13.39 17.57 7.40 

B7 -1.84 -0.69 -0.06 0.29 ILl:': 7.40 '.11 

011 M 

B.l IU IU U IU ILi III 
81 4.09 1.62 -0.75 -3.15 -19.84 -3.33 -8.01 

B1 1.62 0.79 -0.30 -1.27 -7.93 -1.34 -3.16 

B3 -0.75 -0.30 0.41 1.04 5.77 1.04 2.18 

B. -3.15 -1.27 1.04 3.11 21.63 3.91 8.29 

B5 -19.84 -7.93 5.77 21.63 13 •• 13 23.77 52.01 

B' -3.33 -1.34 1.04 3.91 23.77 5.11 9.11 

B7 -8.01 -3.16 2.18 8.29 52.01 9.11 20.53 

011 R 

B.l IU IU U IU ILi III 
Bl 5.70 1.97 0.26 -0.02 -0.20 -15.77 -1.73 

B1 1.97 0.1' 0.16 0.08 -0.02 -5.53 -0.67 

B3 0.26 0.16 1.16 0.98 0.59 1.14 0.31 

B. -0.02 0.08 0.98 1.11 1.02 1.49 0.58 

B5 -0.20 -0.02 0.59 1.02 10.15 -6.10 4.84 

B' -15.77 -5.53 1.14 1.49 -6.10 51.93 2.20 

B7 -1.73 -0.67 0.31 0.58 4.84 2.20 3.10 

Land I 
B.l IU IU U IU ILi III 

Bl 14.'. 7.74 12.16 9.50 11.95 -0.49 7.44 

B1 7.74 •• 7' 7.79 6.23 8.80 0.02 6.01 • 

B3 12.16 7.79 13.'9 10.92 16.43 0.35 11.82 

B. 9.50 6.23 10.92 ,.,. 14.25 0.75 9.93 

B5 11.95 8.80 16.43 14.25 15.55 2.23 18.61 

B' .0.49 0.02 0.35 0.75 2.23 1.35 1.65 

B7 7.44 6.01 11.82 9.93 18.61 1.65 U.51 
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APPENDIX • 

Table B2- Covarlaace Matrices (coatlaoed) 
LaDd2 

JU JU U U IU ILi I.l 
Bl 22.11 9.16 9.90 6.10 0.67 -8.17 -4.83 

B2 9.16 4.3' 5.01 3.53 2.67 -2.72 0.37 

B3 9.90 5.01 '.54 4.87 5.49 -2.21 2.97 

B4 6.10 3.53 4.87 4.12 5.84 -0.76 4.24 

• B5 0.67 2.67 5.49 5.84 15.31 3.04 15.00 

B' -8.17 -2.72 -2.21 -0.76 3.04 5.4' 5.27 

• B7 -4.83 0.37 2.97 4.24 15.00 5.27 U.95 

WetCo'Fe 

JU JU IU U IU ILi I.l 
Bl '9.51 38.43 57.13 41.25 5.67 2.82 -0.66 

B2 38.43 21.7' 32.36 23.78 3.51 1.86 -0.47 

B3 57.13 32.36 49.45 37.38 10.30 3.22 1.05 

B4 41.25 23.78 37.38 31.51 17.99 3.32 4.46 

B5 5.67 3.51 10.30 17.99 74.3' 2.83 27.92 

B' 2.82 1.86 3.22 3.32 2.83 1.11 0.78 

B7 -0.66 -0.47 LOS 4.46 27.92 0.78 11.0' 

WetSaad 

JU JU IU U IU ILi JU 
B1 U.21 9.22 14.90 12.16 16.91 2.06 9.67 

B2 9.22 5.54 8.70 7.11 9.92 1.23 5.70 

B3 14.90 8.70 14.41 11.87 16.72 2.00 9.33 

B4 12.16 7.11 11.87 11." 14.12 1.56 7.70 

B5 16.91 9.92 16.72 14.12 21.31 2.54 11.98 

B' 2.06 1.23 2.00 1.56 2.54 0.11 1.75 

B7 9.67 5.70 9.33 7.70 11.98 1.75 7.99 

Water A 

JU JU IU U IU ILi 1.1 
Bl 1.'4 0.22 0.02 -0.01 -0.01 0.03 -0.01 

B2 0.22 0.2' 0.00 -0.01 0.00 0.02 -0.01 

• B3 0.02 0.00 0.15 0.00 0.00 -0.01 0.00 

B4 -0.01 -0.01 0.00 1.01 0.00 0.01 -0.01 

B5 -0.01 0.00 0.00 0.00 0.02 0.00 0.00 
, 

B' 0.03 0.02 -0.01 0.01 0.00 1.31 0.00 

B7 -0.01 -0.01 0.00 -0.01 0.00 0.00 0.18 
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APPENDIX B 

Table B2- Covariance Matrices (continued) 
Water B 

1.1 JU III U U U 1.1 
Bl 2.34 0.25 -0.05 -0.15 -0.04 0.22 -0.13 

B2 0.25 0.19 0.01 0.00 0.00 -0.02 -0.01 

B3 -0.05 0.01 0.11 0.04 0.01 -0.04 0.01 

B4 -0.15 0.00 0.04 0.22 0.01 -0.09 0.02 

B5 -0.04 0.00 0.01 0.01 0.84 -0.03 0.00 

B' 0.22 -0.02 -0.04 -0.09 -0.03 '.61 -0.05 

B7 -0.13 -0.01 0.01 0.02 0.00 -0.05 0.25 

Water C 

1.1 JU III IU. JU Ili IU 
Bl 2'.5' 20.49 53.95 64.85 20.92 9.06 5.73 

B2 20.49 16.10 45.87 56.61 17.13 7.34 4.68 

B3 53.95 45.87 149.73 201.49 60.75 25.14 16.33 

B4 64.85 56.61 201.49 312.'4 107.83 41.79 28.60 

B5 20.92 17.13 60.75 107.83 4'.27 16.65 12.94 

B' 9.06 7.34 25.14 41.79 16.65 ,.,. 4.46 

B7 5.73 4.68 16.33 28.60 12.94 4.46 3." 

Cloud 

B.1 IU ILl U JU Ili a.z 
Bl 31.58 12.17 16.88 12.83 12.41 -18.78 7.55 

BZ 12.17 4.11 6.55 4.98 4.83 -7.36 2.94 

B3 16.88 6.55 '.3' 7.00 6.74 -10.07 4.07 

B4 12.83 4.98 7.00 5.47 5.07 -7.59 3.07 

B5 12.41 4.83 6.74 5.07 5.12 -7.45 2.98 

B' -18.78 -7.36 -10.07 -7.59 -7.45 12.'7 -4.45 

B7 7.55 2.94 4.07 3.07 2.98 -4.45 I. •• 

• 
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APPENDIX C 

APPENDIX C - Radiometric Mappings aDd Nomenclature 

Table Cl lists the mappings used to convert the lO-bit data to 8-bit data. Table C2lists the 
nomenclature used for the resultant images after the 8-bit conversion, the co-registration, 
and the magnification . 

Table Ct. MapplDgs for A VBRR Data (1*2 to Byte Data) 

AVOI16.NOON 
BAND FROM TO 

1 0 66 266 724 0 10 210 
2 0 51 251 683 0 10 210 
3 0 255 740 929 0 10 240 
4 0 352 552 741 0 10 210 
5 0 305 543 716 0 10 210 

AVOI24.MORN 
BAND FROM TO 

1 0 SO 2SO 426 0 10 210 
2 0 4S 245 409 0 10 210 
3 0 545 806 986 0 10 200 
4 0 392 SOO 826 0 10 200 
5 0 392 SOO 826 0 10 200 

AV0201.MORN 
BAND FROM TO 

1 0 71 183 447 0 10 210 
2 0 66 166 422 0 10 210 
3 0 436 755 935 0 10 200 
4 0 405 562 822 0 10 200 
5 0 405 S64 821 0 10 200 

AV0201.NOON 
BAND FROM TO 

1 0 69 241 698 0 10 210 
2 0 54 240 690 0 10 210 
3 0 223 697 921 0 10 200 
4 0 342 462 927 0 10 200 
5 0 298 422 814 0 10 200 

AV0208.NOON 
BAND FROM TO 

1 0 86 531 872 0 10 210 
2 0 66 521 827 0 10 210 
3 0 258 64S 951 0 10 240 
4 0 390 S43 842 0 10 210 
5 0 333 S04 817 0 10 210 
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APPENDIX C 

Table C2. AVHRR haages Uaed to MODltor tbe 00 Spill 

AVHRRDATA 
(S BANDS 1 kmpixels) 

SOURCE IMAGE 8 BlTlMAGE CO-REGlSTERED 2XZOOMCC 
A V0116.NOON AV0116.NOONS AVOI16.NOON8R A VOI16.NOON8C 
AVOI24.MORN A VOI24.MORN8 AVOI24.MORN8 AVOI24.MORN8C 
AVOllS.MORN AVOIlS.MORN8 • • 
AV0201.MORN A V020I.MORN8 AV020I.MORN8R AV0201.MORN8C 
A V020I.NOON AV0201.NOONS AV0201.NOON8R A V0201.NOON8C 
A V0208.NOON AV0208.NOONS AV0208.NOON8R A V0208.NOON8C 

• • Image DOt generated 

Note the nomenclature to designate the origins of the subscene. For example, 
AV0116.NooN can be translated to A VHRR acquired on 1/16/91 at approximately 
NOON. As listed in Table C2, remapped subscenes were given an "8" suffix (e.g. 
AVOU6.NOON -> AV0116.NOON8). 

The AVOl24.MORN8 subscene was used as the base scene for which the other four 
subscenes were registered. During the registration process, these four subscenes were 
resampled using a bilinear interpolation option. The names of these subscenes were given 
an additional "R" suffix (e.g. AV0116.NOON8 -> AV0116.NooN8R). 

The magnified images (2XZOOMCC) were resampJed using cubic convolution. As Jisted 
in this table, the names of these subscenes were given a "C" suffix (e.g. 
AV0116.NOON8R -> AV01l6.NOON8C). 
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AVHRR 
BIL 
CMYK 
CRREL 
EOC 

ERDAS 
GSL 
IFOV 
ISODATA 
LAS 
MVN 

QRMP 
RGB 
RI 
RIP 
SLAR 

LIST OF ACRONYMS 

Advanced Very High Resolution Radiometer 
Band Interleaved by Line 

Cyan, Magenta, Yellow, and Black 

USACE Army Cold Regions Research and Engineering Laboratory 

Corps of Engineers Emergency Operation Center 

Earth Resource Data Analysis 

TEC's Geographic Sciences Laboratory 

Instantaneous Field of View 
Iterative Self-Organizing Data Analysis Techniques A 

Land Analysis System 

Multivariate Normal 
Quick Response Multicolor Printer 

Red, Green, Blue 

TEC's Research Institute 

Raster Input Processor 

Side-Looking Airborne Radar 

SPL TEC's Space Programs Laboratory 

SRTF/MBIPS Space Research Test Facility, Multiband Image Processing System 
TDL 
TEC 

1M 

TEC's Topographic Developments Laboratory 

U.s. Army Topographic Engineer Center 
I Jlndsat 1bematic Mapper 
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