

TECHNICAL SERVICE RESPONSE NO.: UT022

<u>Subject</u>: Addendum to Technical Service Response No.: UT016 Regarding the Analysis of Samples from a Cow Mutilated June 27, 2001 (Conrad, Montana)

Date:May 12, 2002Requested By:Colm KelleherNIDS

NIDS Las Vegas, NV

<u>Reported By</u>: P. A. Budinger Analytical Scientist

Background/Objective:

A mutilated Red Angus cow was found in Montana with no obvious tracks from vehicles, people, or predators around the animal. The mutilations consisted of very clean excisions of the left eye and eyelid, rectum, genitalia, and tongue. A previous Technical Service Response No.: 016 (December 10, 2001) documented the analyses of a green colored tissue from underneath the left jaw bone, vitreous fluid, and a maggot mass. A cursory examination of vitreous fluid from a control heifer was also done. Additional brain tissues samples were submitted for analysis from the Montana cow, as well as the control heifer, on February 27, 2002. The object is to look for any components that should not be normally present in the mutilated animal. An in-depth evaluation of the MS data previously obtained in November from vitreous fluid of the control heifer was completed as an aid to accomplish this objective.

Conclusions:

1.) The brain of the Montana animal contains a low level (< 1 ppm) of oxindole. Oxindole was also reported (T.S.R. No.: 016) at much higher levels (50-100 ppm) in the vitreous fluid from the cow. This component is known to possess a sedative property. No oxindole was detected in the brain of the control heifer. The other materials detected appear to consist of the expected natural products or putrefaction products from the animal.

2.) Oxindole may also be a byproduct of another drug in which the "parent" molecule may not be identified by this analysis for the possible following two reasons: 1) it is

totally deteriorated; 2) the chemical nature of the drug is not amenable to detection by the analytical procedure employed¹.

3.) Components such as urea and hetercyclic components are also present, which are not noted in the control heifer. Most of these are probably a result of putrefaction, which would indicate that the mutilated cow is in a more advanced state of decay. However, one may speculate that barbiturate type drugs would have degradation products that would also contribute to these putrefaction products. Barbiturates appear to be unstable in aqueous solutions² and therefore, one could surmise that they would also not exist in original form in the animal.

Procedure:

Samples: The following samples were submitted.

(Brain Tissue Samples) Two samples were received in plastic vials surrounded by cold packs.

•A brain tissue sampling from the mutilated cow received 2/27/2002. On receipt the tissue appeared to be in almost a liquid consistency.

•A brain tissue from a control heifer, which was not mutilated, was submitted for reference. It was also received on 2/27/2002. The control animal, obtained from a slaughterhouse, was exposed to environmental conditions expected for mutilated animal carcass. It was laid out for 4 days, and protected from predators and scavengers.

The above samples were extracted with methylene chloride. Solvent was added to the "as received" sample, and it was allowed to soak for 8 days in the refrigerator. The sample was subjected to ultrasonic agitation for approximately one hour a day. The solvent was not completely removed and reduced to 2 mls. Both GC/MS and infrared analyses were then done to characterize the extracts.

(Vitreous Fluid)

•Vitreous fluids from the left and right eye were additionally submitted from a control heifer for reference on 11/13/2001. (See background on control animal above.) Both had been examined "as received" by GC/MS. A more in-depth examination/interpretation was completed on this previously acquired data and is reported in this report. It is to be used as a "benchmark" to possible future samples.

The detailed information regarding the instrumental data acquisition conditions can be found in the appendix.

¹ The chemical structure may have not been amenable to GC (gas chromatography) separation because of high molecular weight and boiling point, or possibly it was in salt form such as a hydrochloride salt, sulfate etc. Also, it is possible that the drug may not have been soluble in methylene chloride used in extracting the liver tissue and the blood.

² Merck Index, Published by Merck & Co., Inc., Rahway, NJ, 10th Edition, 1983.

Results:

The results of the individual tests done on the brain tissues and control vitreous fluids follow. These results are summarized in the conclusions section of this report. All tables and figures referenced in this report can be found in an appendix.

BRAIN TISSUE

GC/MS Analysis: The methylene chloride extraction removed a large amount of soluble material from the brain tissue of the mutilated cow and the control heifer. Expectedly, this analysis shows natural and degradation products predominate. Cholesterol and its derivatives are most abundant. However, a very small amount of unusual compound is uniquely observed in the extract from the mutilated cow when comparing the data from the mutilated animal and the control. This is oxindole. This molecular structure, as well as some derivatives of this structure, is known to possess a sedative property. It has a GC retention time of 17.89 minutes and is positively identified in the mass spectrum. The characteristic masses of oxindole are all present (51, 63, 78, 89, 104 and 133). Masses 104 and 133 are the strongest. The GC chromatograms of the extracts from the tissues of the mutilated cow and the control heifer are shown in figures 1 and 2. The mass spectrum along with a reference of oxindole is shown in figure 3. There are other extraneous peaks in the spectrum, which are probably due to interfering noise. These peaks appear intense because of the very low concentration of the oxindole (<1 ppm). Table I displays the MS identifications of the GC peaks for the tissue extracts from both the mutilated and control animal.

Infrared Analysis:

Infrared analysis of the methylene extracts from the Montana and control animal are identical. The spectra can be found in figure 4. Detected are major amounts of ester and cholesterol components. A smaller amount of protein matter is also indicated. The ester is a glycerol derivative, which compares to references of L- α -phosphatidylinositol, 4,5-diphosphate sodium salt and L- α -phosphatidylinositol, 4-monophosphate sodium salt from bovine brain.³ This material, as well as the protein, would not be detected by the above GC/MS analysis, because it " probably does not pass through a GC column". References of cholesterol, L- α -phosphatidylinositol, 4,5-diphosphate sodium salt and L- α -phosphatidylinositol, 4-monophosphate sodium salt are shown for comparison in figures 5 and 6.

VITREOUS FLUID (Mutilated Montana Cow Versus Control Heifer)

GC/MS Analysis: GC chromatograms of "as received" vitreous fluids from the right and left eyes of the control heifer expectedly match each other. The graphs show a plethora of components. The MS identifications are a good reference to natural and

³ Roger J. Keller, "The Sigma Library of FT-IR Spectra", Edition I, Volume 1, Sigma Chemical company;, Inc., 1986, References 1542A, 1542B.

putrefaction products existing in the animal four days after euthanasia. As noted in T.S.R. No.: UT016, no oxindole was found in the control eye fluids. The ion chromatogram scans for masses of 104 and 133 from GC retention times 17:00 to 20:00 min. of the vitreous fluid from the right eye of the control animal would be expected at an identical retention times if oxindole is present. This is not observed. Oxindole was uniquely identified at 50-100 ppm in the vitreous fluid from the mutilated cow. Table II lists the MS identifications of the control heifer GC peaks along with those of the eye fluid from the mutilated animal, which are reported in T.S.R. No.: 016 to conveniently compare the data. The GC chromatograms are displayed in figures 7 and 8.

Acknowledgments: I wish to thank and acknowledge Richard L. Wilson for the GC/MS analysis

File: UT022.DOC

Phyllis A. Budinger

Distribution:

R. L. Wilson

APPENDIX

Instrumental Data Acquisitions Conditions

Infrared: Both transmittance and reflectance infrared spectra were obtained from the samples using a Nicolet Avatar 360 spectrometer. Transmittance spectra were obtained from smears on KBr crystals. Reflectance spectra were acquired using the Harrick SplitPea[®] sampling accessory.

GC/MS: A Hewlett-Packard GC/MS (DOS-MSD/ChemStation) employing a 6890 gas chromatography, 5973 Mass selective detector and capillary injection system was used for analysis. Chromatographic separation was accomplished by using a 60m x 0.32mm i.d., 1.0 mm film thickness DB-1 capillary column from J&W Scientific (sn 0433924; Cat # 123-1063). The following GC/MS conditions were used:

Instrument:	GC/MS-4
Injector Temp: Inj. 300°C	
GC Oven Program:	50°C (0.0 min.) to 290°C @ 10.0°C/min. (36.0 min.)
Injection Volume:	1.0 μl, splitless
Run Time:	60.6 min.
MS Run Type: Scan	
Mass Range:	25-600 Da; Scan threshold: 100
Scan Start Time:	0 min.
Sampling:	No.=5
Multiplier Volt.: Emv offset=200	; resulting volt.=1490
Method File:	RWSVM.M
Tune File:	ATUNE.U

TABLE I

GC/MS Data from Methylene Chloride Extractions of Brain Samples from the Mutilated Cow and from a Control Animal

Brain Extract of Mo	Cow and from a Control Animal Brain Extract of Montana Mutilated Cow Brain Extract of Control Heifer						
Compound	Match	GC	Compound Match GC				
		Retention Time (min.)	Compound		Retention Time (min.)		
Butanoic Acid Possible C6 Nitrile or Protein	80	6.686 7.533	- M/Z Dessible CC Nitrile er	-	- 7.533		
Fragment		7.555	M/Z Possible C6 Nitrile or Protein Fragment	38	7.555		
(4-Methyl-3-pentenitrile)	37		(4-Methyl-3-pentenitrile)	50			
•Benzeneacetaldehyde,	91	15.150	-	-	-		
.alphaethylene- (<5ppm)	0.						
•Octanoic Acid	50	16.345	-	-	-		
•M/Z 104, 133		17.75	-	-	-		
Oxindole (<1 ppm)	*						
•MW=256 Amino Derivative		18.933	 MW=256 Amino Derivative 		.933		
(2-Amino-3,9-Dimethyl-5-	78		(2-Amino-3,9-Dimethyl-5-	78			
dimethylamino-3H-1,3,4,6			dimethylamino-3H-1,3,4,6-				
tetrazacyclopent(E)azulene)			tetrazacyclopent(E)azulene)		10.100		
-	-	-	•MW=195 Nitrogen Compound	35	19.182		
•MW=195		19.232	(H-Carbazole, 9-ethyl-)	35			
•MW=195 (Methyl 3-ethylamino-5-	43	19.232	-	-	-		
Hydroxybenzoate)	-0						
•C16-C18 Aldehyde		22.070	•C16-C18 Aldehyde		22.070		
(Tetradecanal)	96		(Hexadecanal)	94			
-	-	-	•Benzene, dodecyl-	91	22.966		
 Fatty Acid (<215 ppm) 		23.414	•C16 Acid		23.414		
(Hexadecanoic acid)	99		(Hexadecanoic acid)	93			
 C18 Aldehyde 		23.962	•~C18 Aldehyde		23.961		
(9-Octadecenal)	95		(9-Octadecenal)	90			
•~C18 Aldehyde		24.161	•~C18 Aldehyde		24.161		
(17-Octadecenal)	93	05 000	(17-Octadecenal)	91	05 000		
•~C18 Fatty Acid	97	25.306	•~C18 Fatty Acid	43	25.306		
(Heptadecene-(8)-carbonic acid-(1))	97		(9-Octadecenoic acid (Z)-	43			
•~C18 Fatty Acid		25.505	•~C18 Fatty Acid		25.505		
(Octadecanoic acid)	99	20.000	(Octadecanoic acid)	99	20.000		
-	-	-	•Cholesterol Derivative		27.496		
			[(22S,25S)-22,26-	27			
			Epiminocholest-5-ene-3beta,				
			16 alpha-diol 16- acetate)				
		07.540	(Muldamine)]				
Nitrogen Compound	10	27.546	-	-	-		
(Piperidine, 1,1'-methylene	18						
bis-) •Nitrogen Compound		27.845	•M/Z 85 Amide		27.845		
(Decanamide, N-(2-hydroxy	56	21.045	(Decanamide, N-(2-hydroxy	56	21.040		
ethyl)-)			ethyl)-)				
-	-	-	•M/Z 97 Thiophene Derivative		30.185		
			(Thiophene, 2-decyl-)	23			
•M/Z 131		33.570	•M/Z 131 Naphthalene Deriv.		33.620		
(Naphthalene, 1,2,3,4-tetra	36		(Naphthalene, 1,2,3,4-tetra	47			
hydro-1-methyl-)			hydro-1-methyl-)				
-	-	-	•M/Z 97 Thiophene Derivative	05	34.167		
Ob all at and David if		00 740	(Thiophene, 2-butyl-)	25	00 740		
•Cholesterol Derivative	64	38.748	•Cholesterol Derivative	12	38.748		
(Cholest-5-en-3-ol (3.beta.)-)	64	42.083	(Cholest-5-en-3-ol (3.beta.)-)	12	42.083		
 Cholesterol Derivative (Cholesta-3,5-diene) 	78	42.000	 Cholesterol Derivative (Cholesta-7,14-diene) 	42	42.003		
•Cholesterol Derivative	10	43.477	•Cholesterol Derivative	72	43.477		
(Cholesta-3,5-diene)	99		(Cholesta-3,5-diene)	99	117.77		
•Cholesterol	99	53.733	•Cholesterol	99	53.783		
			ins 104 and 133 between GC r				

*Oxindole was detected in ion chromatogram scans of ions 104 and 133 between GC retention times of 6.00

- 18.40 minutes.

Mutilated Montana Cow			Control Heifer		
Compound	Match	GC	Compound	Match	GC
		Retention			Retention
		Time (min.)			Time (min.)
 Acetaldehyde 	91	3.380	Acetaldehyde	39	3.191
•Trimethylamine	86	3.589	•Methanamine, N,N-dimethyl- (Trimethylamine)	72	3.480
•Butane C4H10	4	4.077	-	-	-
•1-Propanol	72	4.326	-	-	-
•Acetic Acid	91	4.824	-	-	-
Methyl Butanal	45	5.421	-	-	-
Propionic Acid	93	5.969	-	-	-
Butanoic Acid	90	7.263	-	-	-
•C6 Acid		8.159	-	-	-
Hexanoic Acid	12				
Dimethyl Sulfone	59	9.055	-	-	-
Butyrolctone (GBL)	83	9.254	-	-	-
-	-	-	•MW=97 C4H3NO3		10.039
			1H-Pyrrole-2.5-dione (Maleimide)	78	
 Phenol 	91	10.698	•Phenol (~15 ppm)	64	10.369
•Urea	86	10.848 & 10.997	-	-	-
		& 11.196			
 C8H16 Hydrocarbon 		12.142	-	-	-
1-Ethyl-3-methyl-cyclopentane	83				
-	-	-	•MW=99 C4H4NO2		12.143
			Succinimide (~21 ppm)	80	
•4-Methyl-phenol	95	12.341	-	-	-
•Amine?		12.441	-	-	-
1-Piperazineethanamine	12				
-	-	-	 M/Z 44, 98 Nitrogen Compound 		12.597
			2-Pentanamine, 4-methyl-	37	
•MW=99		13.735	-	-	-
2-Piperidinone	35				
-	-	-	•M/Z 112, 56 (MW=112)		13.793
			1,4-Cyclohexanedione	38	
•MW=99		13.835	-	-	-
2-Piperidinone	50	44.504			
•MW=114	50	14.581	-	-	-
5-Methylhydantoin	50	44704			
N-Butyl-1-hexanamine	42	14.731			

 TABLE II

 GC/MS Data from the Vitreous Fluid of the Mutilated Cow and the Control Heifer

Mutilated Montana Cow			Control Heifer		
Compound	Match	GC	Compound	Match	GC
		Retention			Retention
		Time (min.)			Time (min.)
-	-	-	•M/Z 70		14.742
	07	45.000	L-Proline	35	
•Amine	37	15.030	-	-	-
N-Ethyl-cyclopentanamine					15.154
-	-	-	•MW=114	47	15.154
•MW=98 C3H6N4 Amine		15.278	Parabanic acid	47	_
	72	15.276	-	-	-
4-Methyl-1,2,4-triazol-3-amine •MW=114 C4H6N2O2	12	15.577			_
	83	15.577	-	-	-
5-Methylhydantoin •1H-Indole	93	15.926	●1H-Indole	94	15.608
	95	15.920	•M/Z 98	34	15.732
-	-	-	•M/Z 98 Mepivacaine	43	15.752
•MW=112		16.324	Mepivacaine	43	_
•MWV=112 4,5-Dihydro-6-methyl-3(2H)-pyridazinone)	32	10.324	-	-	-
4,5-Dillydio-o-metryi-5(21)-pyndazinone)	52		•MW=138		16.474
•2-Methoxy-5-methyl-2,5-cyclohexadiene-1,4-dione	40	16.573	-		10.474
	40	10.070	•MW=152		16.763
-	-	-	4(3H)-Pyrimidinone, 2-ethyl-3,6-dimethyl-	38	10.705
			2-Methyl-3-(2-thienyl)-2-propenal	64	
●M/Z 42, 98, 111		16.772 to 16.822		-	-
1,1'-Methylenebis-piperidine	47				
-	-	-	•M/Z 100		17.052
			4-Morpholinebutyric acid, .betamethyl-	42	
			.alpha.,.alphadiphenyl		
			4,9-Decadien-2-amine, N-butyl-	42	
•MW= 152 Aromatic Oxygenate		17.120	-	-	-
2-Hydroxy-5-methoxy-benzaldehyde)	43				
•M/Z 100 Nitrogen Compound		17.419	-	-	-
2,4-Imidazolidinedione	64				
-	-	-	•M/Z 98 Ketone		17.423
			3-n-Butylcyclohexanone	32	
•Tyramine	72	17.469	-	-	-
•MW=152 ?Oxygenate		17.817	-	-	-
3-Hydroxy-2-isobut-1-enylcyclopent-2-en-1-one	90				

TABLE II (Continued) GC/MS Data from the Vitreous Fluid of the Mutilated Cow and the Control Heifer

TABLE II (Continued) GC/MS Data from the Vitreous Fluid of the Mutilated Cow and the Control Heifer

Mutilated Montana Cow			Control Heifer		
Compound	Match	GC Retention	Compound	Match	GC Retention
		Time (min.)			Time (min.)
-	-	-	•MW=166	30	17.959
•Oxindole (50-100 ppm)	93	18.216	Phenol, 3-methoxy-2,4,6-trimethyl-	30	
•Oxindole (50-100 ppm)	35	10.210	●M/Z 100, 166	-	18.496
			Hexahydropyrimidin-2-one	40	10.430
 4-Hydroxy-3-methoxy-benzaldehyde 	23	18.365	-	-	-
•M/Z 165	-	18.465	-	-	-
2-Amino-1,7-dihydro-7-methyl-6H-purine-6-one	38				
•MW=166		18.614	-	-	-
3-(1-Amino ethylidine)-6-methyl-1H, 3H-2, 4- pyridinedione	35				
•M/Z 100	10	18.813	•	-	-
2-Methyl-2-butenoic Acid	49				
1-Nitroso-pyrrolidine	45		N/7 400 400		19.032
-	-	-	•M/Z 138, 180 Acetamide, N-(2-nitrophenyl)-	38	19.032
			3-Methoxy-2-methylphenol	38	
•Thymin	87	19.211	-	-	-
•MW=180		19.361	-	-	-
4-(Acetyloxy)-benzoic Acid	49				
Glutamic Acid	72	19.709 to 19.759	•M/Z 84 Glutamic Acid or Derivative		19.321
			L-Glutamic Acid	72	
•MW=194 C12H18O2 Lactone Type	07	19.958	-	-	-
5-Acetyl-1,3,3,4,5-pentamethylbicyclo[2.1.0] pentan-2-one	27	20.307			
•M/Z 120 Phenylalanine Derivative L-Phenylalanine-4-nitroanilide	50	20.307	-	-	-
-	-	-	•M/Z 138, 70		20.558
			Bicyclo [2.2.1]heptane-2-one, 3,3-dimethyl-	53	20.000
			Endo-6-methylbicyclo[2.2.2]octan-2-one	47	
•M/Z 168		20.954			
Imidazo[2,1-a]isoquinoline	11				
-	-	-	•MW=154	05	20.971
			6,8-Diazabicyclo[3.2.2]nonane-7,9-dione	35 14	
-M/Z 102, 165 Apotonilido Dorivotivo		21.153	2,4(1H,3H)-Pyrimidinedione, 1,3,5-trimethyl-	14	
•M/Z 123, 165 Acetanilide Derivative 3-Methoxyacetanilide	25	21.100	1	-	-
J-INIGHIONYAUGIAHIIIUG	20				

Mutilated Montana Cow				
Match	GC Retention	Compound	Match	GC Retention
				Time (min.)
-	-	•M/Z 116, 61		21.177
	01 000	Hexanoic, 2-methylpropyl ester	12	
25	21.302	-	-	-
20	21.551	-	_	_
32				
	22.298	-	-	-
45				
10	22.547	-	-	-
40	_	•M\\/-154		23.157
			38	20.107
-	-	•MW=154		23.322
		2,4(1H,3H)-Pyrimidinedione, 1,3,5-trimethyl-	17	
		Phenol, 3,4-dimethoxy-	27	
		-	-	-
		-	-	-
91	23.091		-	-
-	-	•M/Z 186, 117 Indole Derivative Probable		24.188
		1H-Indole	50	
		4-fluoro-2', methylbiphenyl	83	
40	24.538			
49		M/Z 200 44Z Indala Darivetive		24.890
-	-		43	24.090
	25.285	-	-	-
-	-	•M/Z 91 Aromatic (Phenyl Group)		25.467
	25 002	Benzaldenyde, 2-hydroxy-6-methyl-4-(phenol?)		-
25	20.000	·	-	-
	Match - 25 32	Match GC Retention Time (min.) - - 25 21.302 25 21.551 32 22.298 45 22.547 43 - - - - - - - 45 22.547 43 - - - - - - - - - - - - - 91 - - - 49 - - 25.285 - - 25.883 -	Match GC Retention Time (min.) Compound - - •M/Z 116, 61 Hexanoic, 2-methylpropyl ester 25 21.302 - 32 21.551 - 32 22.298 - 45 22.547 - 43 - - 40 - - - - •MW=154 2,4(1H,3H)-Pyrimidinedione, 1,3,6-trimethyl- - - •MW=154 2,4(1H,3H)-Pyrimidinedione, 1,3,5-trimethyl- - - •MW=154 2,4(1H,3H)-Pyrimidinedione, 1,3,5-trimethyl- Phenol, 3,4-dimethoxy- - 23.493 - 23.891 - 1 - - •M/Z 186, 117 Indole Derivative Probable 1H-Indole - 49 - - - 25.285 - - •M/Z 91 Aromatic (Phenyl Group) Benzene, 1-nitro-4-(2-phenylethyl)- Benzene, 1-nitro-4-(2-phenylethyl)- Benzaldehyde, 2-hydroxy-6-methyl-4-(phenol?)	Match GC Retention Time (min.) Compound Match - - - Match Match 21.302 - - - - 25 21.302 - - - 32 21.551 - - - 45 22.298 - - - 45 22.547 - - - 40 - - - - - 2.4(1H,3H)-Pyrimidinedione, 1,3,6-trimethyl- 38 - - - - - - - 23.493 - - - - 23.891 - - - - - - - - - 91 - - - - - - - - - - - - - - 91 - - - - -

TABLE II (Continued) GC/MS Data from the Vitreous Fluid of the Mutilated Cow and the Control Heifer

TABLE II (Continued) GC/MS Data from the Vitreous Fluid of the Mutilated Cow and the Control Heifer

Mutilated Montana Cow			Control Heifer		
Compound	Match	GC	Compound	Match	GC
		Retention			Retention
		Time (min.)			Time (min.)
Phenyl Component		26.082	-	-	-
Methyl(4.alpha.)-2.alpha.,3.betadihydrozy-5,5-dimethyl- 11-oxatricyclo(7.2.1.0)dodecane-1.alphacarboxylate	27				
-	-	-	•M/Z 70		26.334
			Tetramethyl-1,2-cyclopentanedione	50	
 M/Z 186 Phenoxy Component 		26.530	-	-	-
Phenol, 3-phenoxy-	43				
(1,1'-Biphenyl) 2,5-diol	38				
•	-	-	 M/Z 186 Phenoxy Group 		27.736
			Phenol, 3-phenoxy-	59	
•	-	-	 Phenylalanine derivative 		27.860
			Phenylalanine-proline diketopiperazine	39	
•M/Z 186 Phenoxy Component		28.222	-	-	-
Similar to 26.53. Probably oligomer of some large					
aromatic compound					
•Cholest-5-en-3-ol	89	56.948			

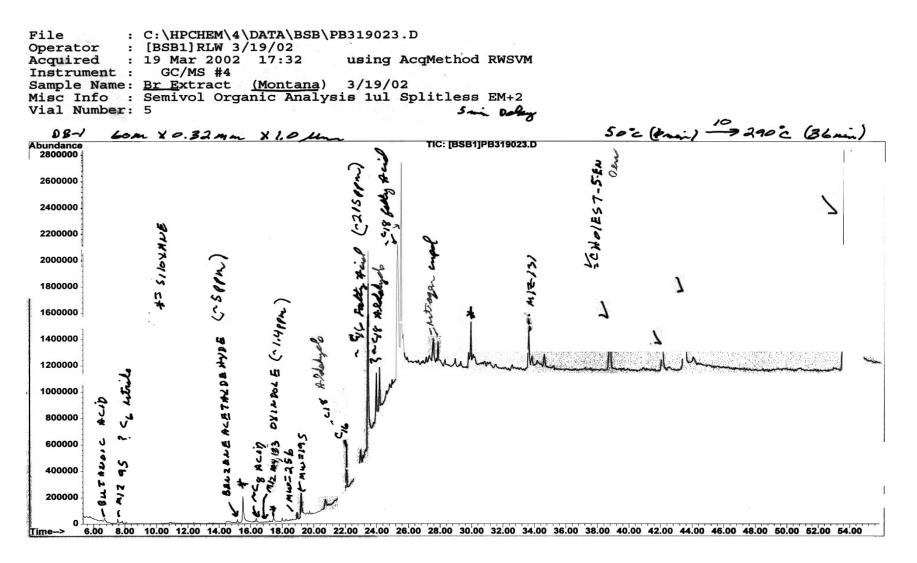


Figure 1. GC chromatogram of the methylene chloride extract from the brain tissue of the mutilated cow.

File : C:\HPCHEM\4\DATA\BSB\PB319022.D Operator : [BSB1]RLW 3/19/02 Acquired : 19 Mar 2002 15:14 using AcqMethod RWSVM Instrument : GC/MS #4 Sample Name: <u>Br Extract (Control)</u> 3/19/02 Misc Info : Semivol Organic Analysis 1ul Splitless EM+2 Vial Number: 3

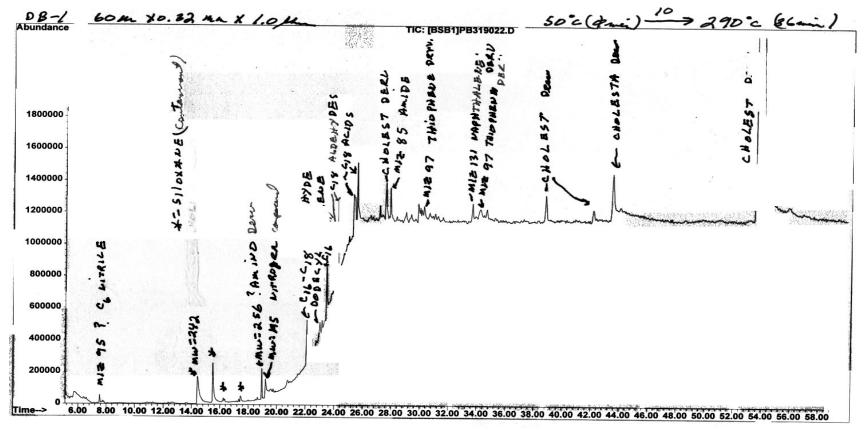
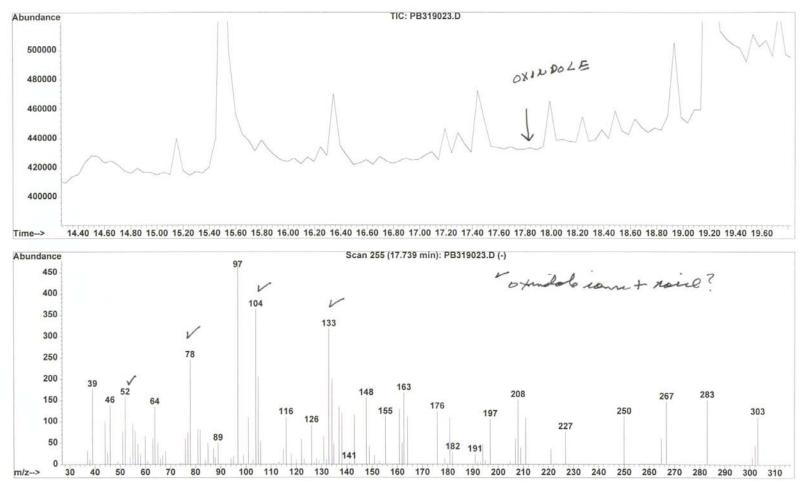



Figure 2. GC Chromatogram of the methylene chloride extract from the brain tissue of the control heifer.

```
File : C:\HPCHEM\4\DATA\PB319023.D
Operator : RLW 3/19/02
Acquired : 19 Mar 2002 17:32 using AcqMethod RWSVM
Instrument : GC/MS #4
Sample Name: Br Extract (Montana) 3/19/02
Misc Info : Semivol Organic Analysis 1ul Splitless EM+2
Vial Number: 5
```

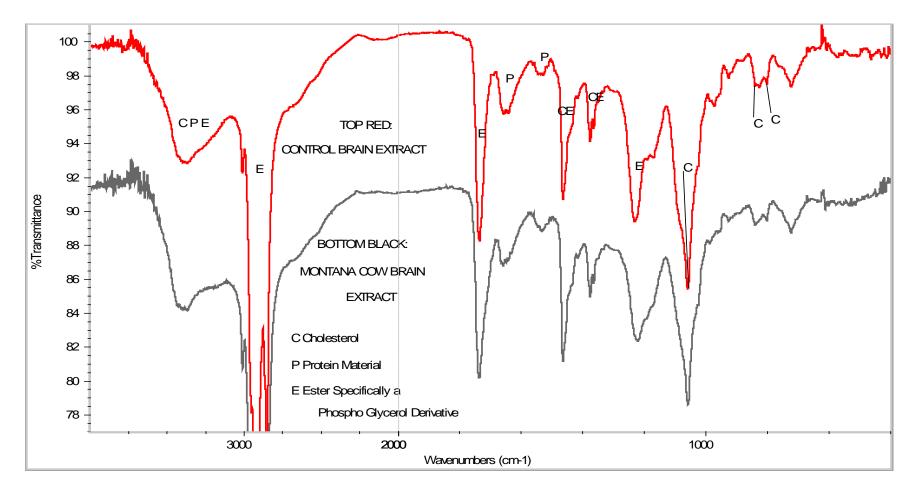



Figure 4. Infrared spectra of the methylene chloride extracts from the brains of the mutilated animal (top, red) and the control heifer (bottom, black).

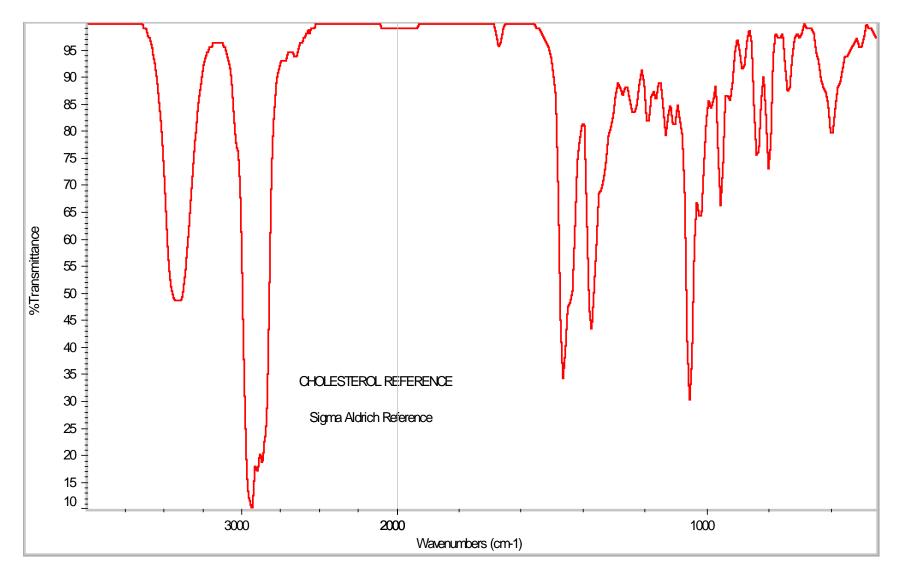


Figure 5. Infrared reference spectrum of cholesterol (Sigma-Aldrich).

PHOSPHO- and SPHINGOLIPIDS

Figure 6. Infrared reference spectra of L- α -phosphatidylinositol, 4,5-diphosphate sodium salt and L- α -phosphatidylinositol, 4-monophosphate sodium salt (Sigma Aldrich).

	C:\HPCHEM\4\DATA\BSB\PAB11130.D
Operator :	[BSB1]RLW 11/13/01
	13 Nov 2001 13:05 using AcqMethod RWSVM
Instrument :	
Sample Name:	Left <u>Eye Fuid</u> 10/18/01 11/13/01
Misc Info :	Semivol Organic Analysis 1ul splitless EM+2
Vial Number:	1

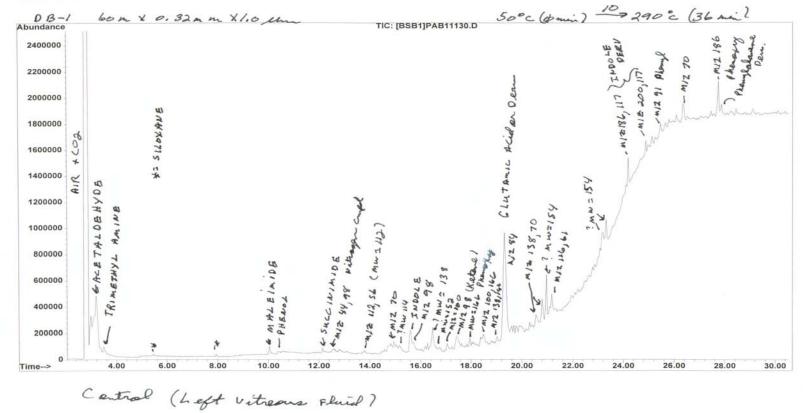


Figure 7. GC chromatogram of the vitreous fluid from the control heifer.

File : C:\HPCHEM\4\DATA\BSB\PAB09201.D Operator : [BSB1]RLW 9/20/01 Acquired : 20 Sep 2001 14:42 using AcqMethod RWSVM Instrument : GC/MS #4 Sample Name: <u>Vitreous Fluid</u> (Montana Cow 6/01) 9/20/01 Misc Info : Semivol Organic Analysis 1 ul Splitless Vial Number: 1

Figure 8. GC chromatogram of the vitreous fluid from the mutilated cow.