THIS FILE IS MADE AVAILABLE THROUGH THE DECLASSIFICATION EFFORTS AND RESEARCH OF:

THEB BLACK VAUMT

THE BLACK VAULT IS THE LARGEST ONLINE FREEDOM OF INFORMATION ACT / GOVERNMENT RECORD CLEARING HOUSE IN THE WORLD. THE RESEARCH EFFORTS HERE ARE RESPONSIBLE FOR THE DECLASSIFICATION OF THOUSANDS OF DOCUMENTS THROUGHOUT THE U.S. GOVERNMENT, AND ALL CAN BE DOWNLOADED BY VISITING:

HTTP:I/WWW.BLACKVAULT.COM
YOU ARE ENCOURAGED TO FORWARD THIS DOCUMENT TO YOUR FRIENDS, BUT PLEASE KEEP THIS IDENTIFYING IMAGE AT THE TOP OF THE PDF SO OTHERS CAN DOWNLOAD MORE!

DEPARTMENT OF THE ARMY

HEADQUARTERS, USS. ARMY DUGWAY PROVING GROUND

 DUGWAY UT 84022-5000April 14, 2010
ATTENTION OF:

Office of the Command Judge Advocate

Mr. John Greenewald, Jr.

Dear Mr. Greenewald:
We previously advised that your request made under the provisions of the Freedom of Information Act (FOIA), 5 U.S.C. Section 552 was forwarded to our office as a matter under our purview. The document you requested was titled "Entomological Field Test Technology, Bellwether II, BIO 531." We advised you in a letter that the document was located in our Technical Library but that it was still classified at the Confidential level and would be withheld at that time under Exemption (b)(1) of the FOIA.

After considerable review, it has been determined that this document has been regraded to unclassified. It is now enclosed to fulfill your request.

All fees assessed to this point are less than the minimum charge.
If you have questions regarding this letter, please address them to Ms. Teresa S. Shinton, FOIA Officer, (435) 831-3333; email: teresa.shinton@us.army.mil.

Sincerely,

$\mathcal{H} \begin{aligned} & \text { Kateni T. Leakehe } \\ & \text { Major, U.S. Army } \\ & \text { Command Judge A }\end{aligned}$
Command Judge Advocate

U. S. ARMY CHEMICAL CORPS RESEARCH AND DEVELOPMENT COMMAND DUGWAY PROVING GROUND

Dugway, Utah

Teohnicel Report DPGR 293

ENTOMOLOGICAL FIELD TEST TECHNOLOGY
BELLNETHER-II, BIO 531 (U)

Short Title: BELLRETHYR-II

December 1961

Distribution linited to U.S. fovemment agencies only;
Test and Evaluatior. (Ol Fele 77). Other requests must be referret to: Comander, US Army Dugway Proving Ground, ATMt: TEcinical Library, Documents Section, Duqway, Utah 84022-5000.

Biological Branoh
Test Design and Analysis Office Teohnical Operations Directorate

SECNET

FOREWORD

(C) The U. S. Army Chemical Corps has been assigned the task of providing the Department of Defense with adequate CBR weaponry. Certain entomological veotor-agent systems, after a period of laboratory demonstrations, qualitative field experience, and theoretioal evaluations, have reached the quantitative field test stage and Dugway Proving Ground has been assigned the field testing responsibility. The present volume, containing the field experimentation of BELLWETHER -II, reports on the endeavors of Dugway Proving Ground to standardize an entomological field test technology.
(U) This material contains information affecting the national defence of the United States within the meaning of the Espionage Laws, Title 18, U.S.C., Sections 793 and 794, the transmission or revelation of which in any manner to an unauthorized person is prohibited by law.
(U) The authority for conducting this test is contained in Dugway Proving Ground Operating Program, FY 1962-1966, Target Year FY 1962, Appendix 1 to Annex C, Operating Schedule, Dugway Proving Ground, Utah, 1 July 1961, revised 1 October 1961. Secret. Tests were funded under Digway Proving Ground Job Order Numbers 1-02-10-1 and 1-02-10-2 in support of Department of the Army Research and Development Project Number 4D98-05-028-02.
(U) When this dooument has served its purpose, it should be destroyed. It should not be returned to the originating office.
(U) Reproduction of this document, in whole or part, is prohibited except with specific permission of the issuing office.

DIGEST

(S) The objectives of BELLNHTHAR-II, using releases of uninfeoted, starved, virgin female Aedes aegypti mosquitoes, were, in part:

1. To evaluate the effeots of varying the host distance, the host concentration, and the vector/host ratio:
2. To determine the effect of the presence or absence of overt movement of the human samplers upon the outdoor biting rate; and
3. To investigate methods of placement of human samplers in open terrein and within built-up areas.
(U) Inherent throughout the entire test was the development and improvement of a basic entomological field test teohnology.
(C) A total of 14 field trials were conducted in the period extending from 6 September to 20 October 1960. Up to 100 assigned military personnel were used as samplers in each trial, and grid arrays involving dispersal distanoes muoh greater than those involved in BELLNETHRR-I were incorporated in this test design.
(S) From the data generated in this test, and under the specific conditions encountered, it is conoluded that:
4. In a 30 -minute sampling period, there was no significant difference in veotor biting aotivity at distances up to 100 feet from the release point, but maximum biting aotivity ocourred at distanoes of less than 200 feet.
5. Intervening hosts did not interfere with either the veotors' outward spread or biting aotivity.
6. No conclusive findings were generated as to the effect of host concentration.
7. When the number of vectors was increased by a factor of 10 , approximately 10 times as many bites were received and the proportion of hosts bitten was inoreased an average of 36 per cent.
8. Vector biting aotivity showed a tendenoy to be highest when the hosts were alternately in motion and then motionless for reourring 5 -minute periods, and to be lowest when the hosts moved continuously.
9. Hosts looated near buildings were subjeoted to significantly greater veotor biting activity than ware hosts located in open areas.
10. Veotors did not tend to distribute themselves evenly throughout an isolated built-up area, and, further, they did not tend to redistribute themselves evenly during the interims between host oocupations.
11. No oonclusive findings were generated as to the optimum sampling duration.
12. No evidenoe of orepusoular-period biting preferenoe was obtained in these trials.
13. No oomolusive findings were generated conoerning the average longevity of this species when exposed to ambient desert oonditions.
Page 5
CONTENTS(UNOLASSIFTHD)
PageNumber
Foreword 2
Digest 3
Introduction 7
Ba okground 7
Objectives 7
Slope 8
Methods and Materials 8
Test Site 8
Test Vector 8
Test Fixture 8
Sampling Personnel 9
General Test Procedures 10
Test Procedures by Phases 11
Phase A 11
Subsequent Phases 11
Meteorologiosl Procedures 11
Photographic Procedures 13
Investigational Prooodures and Analysis 13
General 13
Phase B 13
foots of Radius and Type of Circle 16
Effect of Time 18
Phase C 18
Heffeot of Veotor/Host Ratio 21
hefeot of Host Concentration 21
Effect of Host Distance 24
Phrase D 24
Phase E 26
Variability Among Areas 27
Variability Among Stations Within Areas 33
Effect of Position (Group I Versus Group II) 33
fffeot of Time 35
Variability Among Stations 39
Results of Second Crepuscular Period of Trial E-2 39
Page 6
CONTENTS (Continued)
(UNCLASSIFIED)PageNumber
Phase F 42
Disoussion 43
Conolusions 45
Litereture Cited 46
Appendix A - Meteorologioal Data 47
Appendix B - Sampling Data 75

INTRODUCTION

BACKGROUND

(S) The U. S. Army Chemioal Corps Researoh and Development Command in June 1960 (1) directed Dugway Proving Ground (DPG), Utah, to investigate and develop entomologioal field testing teohniques designed to permit the quantitative evaluation of entomologioal munitions. These teohniques were required to be adequate for evaluating entomologioal weapon systems against strategio targets such as built-up areas of oities, industrial oenters, and logistioal oomplexes; jungles and heavily wooded aress containing dispersed enemy personnel; and any type of terrain containing well equipped and well organized guerrilla foroes. Of physioal necessity, the present test had to exolude the effects of oonfferous, deoiduous and rain forests, and of heavily built-up areas if it was to be oonduoted at DPG. Rather stringent time limitations preoluded oonduating these trials alsewhere and still utilize the autumn 1960 testing season.) Trials in the southern United States inoorporating these and other target aspeots are being considered for FY 1962.
(U) The general baokground and the problems assooiated with the development of an entomologioal field test technology have been adequately desoribed in DPGR 259, BELLNETHERR-I (2), and need not be repeated here. The basic problem of obtaining and evaluating valid, quantitative data gathered by relativels untrained, military personnel has not been completely resolved in the present test series. However, progress has been made, and, as a result, data should improve in the future.

OBJECTIVES

(S) The speaifio objectives of this test, using releases of uninfected, starved, virgin femele Aedes aegypti mosquitoes, were:

1. To evaluate the offeots of varying the host distanoe, the host conoentration, and the veotor/host ratio (Phases B and C);
2. To determine the effect of the presence or absence of overt movement of the human samplers upon the outdoor biting rate of this mosquito (Phase D);
3. To investigate methods of placoment of human samplers in open terrain (Phases B and C) and within built-up areas (Phase E);
4. To determine the optimum sampling period duration (various pheses), and whether time of dey need be oonsidered (Phase \mathbb{I}); and
5. To determine the average longevity of the A. aegypti mosquito when exposed to ambient desert conditions (Phase F).
(J) Inherent throughout the entire test was the development and improvement of a basio entomological field test teohnology. This was to be aohieved in the various data phases, in observations of the conduot of the trials, and in evaluating the date recoived.

SCOPE
(C) This test, oomprising sir phases, was oonduoted in a series of orientation trials (Phase A), 14 field trials (Phases B through E), and 2 laboratory-soale trials (Phase F). The testing period began 29 August 1960 and extended to the effeotive end of the autumnal testing season, late Ootober 2960. For the conduct of this test, it was neoessary to orient and train a total of 100 military assignees. Together with the experience of using troops as sampling units on more oomplex grid arrangements, further basio data on the behavior of the A. aegypti mosquitin were also gained, as were guidelines for designing future field trials wherein different grid oonfigurations and terrain types would be used.

MBTHODS AND MATERIALS

THST SITH

(U) The possibility of veotor persistence within a trial area deoreed that several days elapse before a further trial be conduated in the partioular area of a previous trial. This faot neoessitated using several widely dispersed areas for the full oonduot of these trials. These areas, shown in Figure 1 , were the Clay Flats Targot, the region west of the West Gate, the vioinity of the road leading north from Baker Laboratory, seotions of the Downwind Grid, and in the built-up seotion of GPI-2. The Phase F studies were conduoted just outside of Baker Laboratory.

TEST VECTOR

(C) The test veotors were uninfeoted, virgin female CD strain A. aegypti mosquitoes, raised in the standard manner from egg papers furnished by the U. S. Army Chemical Corps Biologioal Leboratories (Biolabs), Fort Detrick, Frederick, Maryland. The mosquitoes were reared in the inseotary at Baker Laboratory; the sexes were separated in the pupal stage by means of a Biolabs pupal separator; and all the adults were 6 days or older and starved 16 to 24 hours prior to release when used.

Fig. 1. - Map showing test areas, Bio 531, BELLWETHER-II.
in BELLNETHER-I, were also used in BELLNETHER-II. The l-quart size was used for fills of up to 250 veotors and the l-gallon size was used for fills to 2500 vectors. In the 5000 -veotor releases of Phase \mathbb{E}, two lgallon fixtures were used (in the first Phase E trial, the l-gallon containers were not yet available, and, therefore, a 2-gallon 'hat box' was used). The cardboard tops of the ice cream oartons were pushed out and replaced by a small square of nylon bobbinet. The string harnesses used in BELLWETHER-I were replaced by reuseable wire and olip harnesses.
(v) Prefabricated test fixture stands were oonstruoted for this test, roplaoing the driven stakes used in BELLMETHER-I; one of these is shown in Figure 2. The use of this device also facilitated moving the fixtures to keep them upwind of the sampling array at function time in the Phase C trials.

SAMPLING PERSONNEL

昔禜变。

station until the oompletion of the trial. In those trials where radio communication was required to synohronize the times of test fixture funotioning, the vehiole was driven a few hundred feet upwind and parked until the command to release was received. This was relajed to the test personnel and the vehicle was then driven rapidly upwind.

TEST PROCEDURE BY PHASES

(U) This test was conduoted in six phases--A through F.

Phase A

(U) Phase A was a familiarization phase that followed the general orientation briefing. In this phase, in whioh several groups vere tested concurrently, each group oonsisted of 10 men positioned equidistantly around the perimeter of a oirole having a radius of 15 feet--in the manner of BELLWHTHAR-I. One hundred veotors were released in the center of each, oirole, and the men reoorded the number of bites and probes reoeived in a 20 -minute period. The purpose of this phase was to familiarize the men with the prooedures fo be used in the forthooming trials and with entering data on the data card (see Fig. 3). Severe reaotors were removed from the test series following Phase A.

Subsequent Phases

(U) The speoific methods followed in the various data phases (B through F) of this test are presented, precoding the statistical analysis of the results of each phase, in the Investigational Prooedures and Analyses seotion.

MEIHOROLOGICAL PROCEDURES

(U) In all phases exoept A and F, two 2-meter meteorological stations were used, and, wherever possible, these stations were located at least 0.25 mile upwind of the test site to reduce the possibility that these positions would serve as shelters to the inseots and thus bias the results. The locations of these stations are depiated in Figures 4 through 7. These stations recorded the 2-meter wind speed and direotion on chart rolls; the relative humidity, ground temperature, and ajr temperature were determined and manually reoorded at lo-minute intervals throughout eaoh trial. A devioe for determining inoident ultraviolet radiation was also utilized. On those trials oonducted within several miles of the West Gate, this devioe was installed at the West Gate and was operated from the line current available there. On the other trials, a separate generator was provided and the instrument was looated in the field at one of the meteorologioal stations. It reoorded all inoident ultraviolet radiation falling between 2000 and 3760 that struok an exposed hemisphere. However, no oorrelation between biting aotivity and ultraviolet radiation could be detected.

UNCLASSIFIED
(nowhesitimp)
DATA CARD - ENTOMOLOGY FIELD TEST-531-1960
Est. S.

UNCLASSIFIED
EXTENDED SAMPLING SHEET

	$\underset{\substack{\text { (mimpoes) }}}{\text { TTINE }}$	$\begin{gathered} \text { NUMBER OF } \\ \text { BITES } \end{gathered}$	ACCUMULATION ${ }_{\text {(co }}$ not whte in this oflum)	REMARKS (Unusual behavior, etc.)	
7.	30 to 35				
8.	$35 \text { to } 40$				
9.	$40 \text { to } 45$				
10	$45 \text { to } 50$				
11.					
1.	O to ss				
	55 to 60				
3.					
.	70 to 100				
15.	100 to 110				
16.	$110 \text { to } 120$				
	Total (extended) Grand Total				

(pargener)
 UNCLASSIFIED II

Pig. 3. - Date card used in the BrLL
(U) No meteorologioal ooverage was provided in the Phese a orientation trials. In Phase F, a 24 -hour recording hygrothermograph placed on the ground near the two groups of cones reoorded ambient temperature and relative humidity throughout the trial periods.

PHOTOGRAPHIC PROCTDURES

(U) In order to produce a general orientation film for training personnel for biting rate assessment in future entomological field trials, a soenario of soene sequenoes was prepared. Photographio Sootion, Target Operations Branoh, photographed these various sequenoes on 16 -millimeter Kode ohrome film. The prooessed film was then roughly edited and stored. Further test sequences and seleoted seotions of a U. S. Public Health Servioe film will be obtained and inoorporated before final editing is attempted.

INVESTIGATIONAL PROCEDURES AND ANALYSES 250-foot oiroles. Simultaneously, 1000 veotors were released in the center of each of the separate oircles, and 3000 vectors were released in the center of the conoentric oonfiguration. Bites were then recorded by each of the hosts for six consecutive 5 -minute time periods so that there was a total of 600 host-time units. Therefore, the total number of bites recorded in a trial divided by 600 was the mean number of bites per host-time unit, the so-called average bite number.
(U) For every time-unit, ea oh of the six ciroles produced a number signifying the proportion of hosts on that oircle whose reported bites exoe日ded the average bite number. Thus, if the average bite number was

Pressa and TRIAL Nambir	$\begin{gathered} \text { DATR }(S) \\ \text { OF } \\ \text { TRTAL } \\ (1960) \end{gathered}$	FUNCTION TTME (MST)	AVIRACR (STATION Spoed (mph)	MBTER TIND --E or S) Diraction (')	$\begin{aligned} & \text { AVMRAGE } \\ & \text { CSTATION } \\ & \hline \text { Speod } \\ & (\mathrm{mph}) \end{aligned}$			AVERAGR GROUND TTMPRRATURE (${ }^{\circ}$)	averiagi RELATIVIT нй"Dity (d)		TOTAL NLUCBETR Or VRCTORS RBLRASED	$\begin{gathered} \text { TOTAL } \\ \text { NOMBIR } \\ \text { OF } \\ \text { BITRS } \\ \text { RRGMIVRD } \end{gathered}$	$\begin{gathered} \text { AVERAGZ } \\ \text { BITYS } \\ \text { FKR } \\ \text { FECROR } \end{gathered}$
Phase B													
B-2	6 sop	$\begin{aligned} & 1405,1410, \\ & 1428 \end{aligned}$	6.2	168	7.0	134	90.6	90.0	19.5	73,962	6000	490	0.082
B-2	23 Sep	1132	2.7	317	4.2	037	70.3	72.2	20	91,700	5000	8937	1.490
B-3	19 oot	1457	3.4	222	2.7	156	70.0	N**	23	24,347	1500	1059	0.706
Phase C													
C-1	19 Sep	1140	7.3	185	6.9	183	86.1	103.5	13	96. 231	4400	972	0.221
C-2	22 Sop	1458	6.2	321	8.5	325	70.5	91.2	31.8	75,133	4100	-72	0.162
C-3	29 Sop	1045	4.4	272	3.4	276	53.7	68.0	28	34,475	4400	1626	0.370
C-4	$500 t$	1353	6.2	285	Inop**	Inop 4	80.6	80.2	16	46,550	4400	3506	0.797
C-5	17 0ot	2350	4.2	300	Tnop	Inop	64.7	ND	23	20,672	4400	1606	0.365
C-6	20 00t	1514	2.6	328	3.2	318	66.5	64.8	35	10,675	4400	1920	0.436
Pbase D													
D-1	15 Sop	1105	6.7	255	5.8	240	75.3	92.9	30	62,300	900	238	0.264
D-2	28 Sop	1005	4.2	313	3.1	279	77.6	73.9	15	52,308	900	616	0.684
D-3	19 out	1248	4.7	297	3.2	289	65.9	59.8	37	50,392	900	284	0.316
Phasc [is													
F-1	19 Sop	1711	2.8	089	5.0	127	82.6	96.9	21	245	5000		
8-2	3 oot	1725	3.3	214	2.5	245	68.4	ND	15	ND	5000	1564	0.313
	seoond	period	2.3	172	2.4	137	60.0	53.9	28.	ND			
区-3	$1900 t$ second	1700 period	2.7 ND	172 ND	2.3 2.8	126 256	61.2 59.5	\%3D	$\begin{aligned} & 30 \\ & 35 \end{aligned}$	$\begin{array}{r} \text { HD } \\ 38,098 \end{array}$	5000	6	0.001
Phase F											-		
F-1	$\begin{gathered} 19-20 \\ \text { Sop } \end{gathered}$	1600	- ${ }^{3}$	-	-	-	66	-	27	-	-	-	-
F-2	27 Sop	1000	-	-	-	-	77	-	20	-	-	-	-

- 3 Inoperative.
${ }^{-3}$ Not applioable.

(2) Moteorologioal thation

Cirole A, 100-foot radius
Circle B, 150-foot radius
Circle C, 250-foot radius
Cirale D, 100-, 250 -, 250-foot radii
Fig. 4. - Grid array for Phase B, BELLWETHER-II.
14.9 and 10 of 25 hosts in a oircle reported 15 bites or more during a given time interval, the appropriate proportion for that time-oirole unit was 0.40. In this way, each trial produoed 36 proportions (6 timeunits $\times 6$ oiroles).
(U) An analysis of variance, based on the three-way cross olassifioation of time, radius, and type of oirole (individual versus concentrio), was performed on the proportions obtained in eaoh trial, weighting each proportion according to the number of hosts involved. The test of significance for each component was made in the analysis by means of the chi square (X^{2}) distribution, where the sum of squares for each oomponent had first been converted to a chi square value by the formula:

$$
\frac{\text { sum of squares }}{\bar{T} \bar{q}}=X^{2}
$$

where $600 \overline{\mathrm{p}}$ equels the total number of host-time units over the entire trial with reported bites not less than the average bite number, and व equals 1 - $\bar{p} .1$ The results of these analyses are presented in Table 2.

[^0]TABLR 2: Results of the Chi Square Analysis, Trials B-1 through B-3, BILLITETHER-II, Bio 531 (CONFIDENITAL)

SOURCR OF VARIATION	$\begin{gathered} \text { DEGGRMES OF } \\ \text { FRERDOM } \end{gathered}$	CHI SQUARE VALUES FOR INDICATMD TRIAL		
		Trial B-1	Trial B-2	Trial B-3
Radius, R	2	151.2*	158.4*	37.5*
Cirole Type, C	1	8.3*	1.1	5.5 *
$\mathrm{R} \times \mathrm{C}$	2	$33.8 *$	30.5*	$10.4 *$
Time, T	5	17.0*	4.8	41. ${ }^{\text {² }}$
R \times T	10	17.2	2.4	9.9
Cx	5	9.8	1.4	2.6
$\mathrm{R} \times \mathrm{C} \times \mathrm{T}$	10	8.9	1.9	13.7

Statistioally signifioant at the 5.0 per cent level.
(U) As shown in Table 2, there was a tendency for every main effeot and the two-factor interaotion $\mathrm{R} \times \mathrm{C}$ to be statistically signifioant. The effects of these oomponents are, therefore, disoussed below.

Effect of Radius and Type of Circle

(U) It proved diffioult in these trials to oompare biting aotivity on individual oiroles with that on oonoentrio oiroles, because. in the former, 1000 vectors were released in the oenter of each of three oiroles, while in the latter, 3000 veotors were released in the oenter of a single set of three oiroles. An alternate method, releasing 1000 vectors in all oases, might have been used. However, using that method, the veotor/host ratio in the separate oiroles would be three times the ratio in the ooncentrio oiroles, and this would not permit meaningful oomparisons. The present trials are well suited to oomparing the relative effeots of the different radil of oiroles and the different time periods, as well as the interaotions of these faotors with the "oirole-type" faotor.
(c) Interpratation of the $\mathrm{R} \times \mathrm{C}$ interaotion was oomplioated by the faot that there were three (1.e, more than two) different radii. Ignoring the 150 -foot oiroles, the effedt of "radius" was oonsidered by simply comparing the results from the 100 -foot oiroles with the results from the 250-foot oiroles (see Table 3). In every trial, signifioantly higher biting aotivity per host was found at the lo0-foot oirole than at the $250-$ foot circle. Further, there was a general tendenoy in all trials for the values from the l50-foot oiroles to fall below the values from the $100-$ foot oiroles. This suggests that optimum biting aotivity in the initial primary time period (30 minutes) ooourred at less than 150 feet, but this distance was doubtiessly affeoted by the wind speed. In addition, the "radial effeot" (100-foot aotivity)-(250-foot aotivity) for the concentrio oiroles was compared with the same offeot for the separate oiroles. No signifioant difference was deteoted in Trials B-1 and B-2, but the difference in Trial B-3 was signifioantly larger in the oonoentrio oiroles than in the separate oiroles. This may have resulted beoause of the peouliarly low biting aotivity observed on the 100 -foot

TABLE 3: Proportion of Hosts Exoe日ding the Average Bite Number, Summarized Over the Time Units and Segregated With Respeot to Radius and Type of Cirole, Trials B-1 through B-3, BELLWETHER-II, Bio 531 (CONFIDENTIAL)

separate oircle（0．45），and，since it was not demonstrated in Trials B－1 and B－2，the interpretation for this phase might be that，under the oon－ ditions encountered，the l50－foot oirole of hosts did not significantly interfere with the passage of veotors from the 100－100t to the 250－foot oirole．

Refoot of Time

（c）As indioated by the results of the ohi square analysis in Table 2，there were significant differences in the proportions determined for the six time intervals in both Trials B－1 and B－3．The oomposite data presented in Table show that in both of these trials the propor－ tional value reached a maximum in the second time period（ $5-10$ minutes） and deolined thereafter．In oontrast，no signifioant difference oould be deteated in the proportions obtained for the six time intervals of Trial B－2．Thus，biting aotivity in this trial did not deorease with an increase of time，and，presumably，if the trial had been extended beyond the 30 －minute time period，a considerable number of additional bites would have been obtained．However，even within the 30 －minute sampling period， the average number of bites per vector（1．49）was greater than that ob－ tained in any other entomologioal field trial oonduoted at DPG．The preoise reason or reasons for the greatly enhanced results of this trial over all others oonduoted at DPG，however，oould not be asoertained．

PHASE C
（C）Phase C was oonduoted to examine three host－veotor relation－ ships，viz．：the host distance（the distance of the hosts from the veotor release），the host oonoentration（the number of hosts per unit area），and the veotor／host ratio（the number of veotors per host）． Eaoh of these relationships was evaluated at two levels－－an arbitrary high and a low．A total of 80 hosts were used in eaoh trial；and they were arraged along a orosswind line in eight 20 －foot squares，each 0.5 mile distant from the adjacent squares，as shown in Figure 5．The hosts were divided into four groups（A，B，C，and D），with eaoh group oompris－ ing two of the 20 －foot squares．In eaoh group，one of the squares oon－ tained 4 men with 1 man at eaoh oorner，and the other square contained 16 men spaoed 5 feet apart．These arrays represented the variation in host ooncentration at the arbitrary low and high levels，respeotively．
（U）In four of the eight squares，the veotor release points were located 20 feet upwind of the hosts；at the other four， 100 feet upwind． As such，they represented the arbitrary low and high level，respeotively， of host distance．The third variable studied，veotor／host ratio，was varied by using either a $10 \% 1$ or a 100／1 ratio release upwind of each 20 －foot square．The test fixtures were funotioned simultaneously upon a signal from the Test Officer，and sampling was oontinued for 30 minutes．
（U）A total of six trials was oonduoted in this phase（a nondetailed

TABLE 4：Proportion of Hosts Exooeding the Average Bite Number Summarized Over the Types of Ciroles and Segregated With Respoot to Radius and Time，Trials B－I through B－3， BELLWETHIRR－II，BIO 531（CONFIDENTIAL）

TTME INTERVAL（Minutes）				
	Radius of Cirola（Feet）			Average
	100	150	250	
	Trial B－1			
0－5	0.65	0.50	0.04	0.30
5－10	0.90	0.64	0.08	0.41
10－15	0.70	0.50	0.12	0.35
15－20	0.55	0.50	0.04	0.28
20－25	0.35	0.40	0.06	0.22
25－30	0.45	0.24	0.06	0.18
Averaga	0.59	0.48	0.07	0.29
	Trial B－2			
0－5	0.80	0.20	0.08	0.26
5－10	0.75	0.33	0.20	0.35
10－15	0.80	0.37	0.24	0.39
15－20	0.85	0.33	0.16	0.35
20－25	0.85	0.30	0.14	0.33
25－30	0.85	0.30	0.24	0.38
Average	0.82	0.31	0.18	0.34
	Trial B－3			
0－5	0.65	． 0.30	0.14	0.29
5－10	0.80	0.53	0.44	0.58
10－15	0.70	0.33	0.36	0.42
15－20	0.60	0.27	0.26	0.33
20－25	0.35	0.17	0.14	0.26
25－30	0.30	0.07	0.07	0.15
Average	0.57	0.28	0.27	0.33

ingand

- Rolease point.

O Samping position.
8 2-meter meteoralogical station.
Fig. B. - Grid array for Phase C. BRiluticirn-II.
each host recorded bites for six consecutive 5 -minute time intervals, there was a total of 480 host-time units in each trial. The number of bites obtained in ea oh of these 480 units was recorded, and the median of these numbers was the so-oalled median bite number. For every time unit, each of the eight squares produced a value--namely, the proportion of hosts in that square with reported bites exceeding the median bite number. Thus, each trial produced 48 proportions.
(U) For each trial, an analysis of variance based on the four-way cross olassifioation of time, host distance, host concentration, and veotor/host ratio was performed on the proportions, weighting each proportion according to the number of hosts involved. In every analysis, the test of significance for each component was made by means of the obi square distribution, the obi square value for each component being obtained in a manner similar to that used in Phase B. The results of these analyses are summarized in Table 5.
(C) As shown in Table 5, the results of the oh square analyses indicated that the difference between the effects of the high and the low veotor/host ratios was highly significant in all trials. Further, host concentration was usually significant, and host distance was signifioant only in Trial c-3. None of the two- or three-way interaction terms, however, showed a tendency for statistical significance. The individual effects of the three host-veotor relationships are discussed below.

Effect of Veotor/Host Ratio

(U) Table 6 gives the proportions of host-time units which excorded the median bite number in each trial summarized over the two distances and six time units and segregated with respect to veotor/host ratio and the host concentration.
(C) As shown in Table 6, the proportion of host-time units exceding the median bite number was ${ }^{\text {greater, in each comparison, for that }}$ square associated with the higher vector/host ratio (100:1). Further, as shown in Table 7, the data indicate, in general, that when the number of vectors is increased by a factor of 10, approximately 10 times as many bites are received.
(c) Table 7 also shows that the percentage of hosts receiving one or more bites ranged from 40 to 72 per cent, with an average of 60 per cent, when 10 vectors per host were released, and from 95 to 100 per ont with an average of 96 per cent, when 100 vectors per host were released.

Effect of Host Concentration

(U) Since the higher host concentration squares presented greater bulk and contrast it might be expected that they would be subjected to greater biting activity than the lower host concentration squares. This

TABLE 5: Results of the Analysis of Chi-Square, Trials G-1 through C-6, BELLHEIHKR-II, B1O 531 (CONFIDENITAL)

SOURCE OF VARIATION	$\begin{aligned} & \text { DEGRGIFS OF } \\ & \text { FRGMDOU } \end{aligned}$	X 2 VALUES FOR INDICATED TRTAL				
		Trial 1	Trial 2	Trial 3	Trial 5	Trial 6
$\begin{aligned} & \text { Veotor/Host } \\ & \text { Ratio, V, } \end{aligned}$	1 (1)*	173.4900	87.71**	128.28**	122.11**	168.14**
$\underset{\text { D }}{\text { Host Distanoe, }}$	1 (0)	-3	1.23	38.58**	0.41	0.03
Host Conoentration, H	1 (1)	$8.03{ }^{4}$	2.32	$6.78{ }^{4}$	9.36*4	$4.41{ }^{5}$
Time, T	5 (5)	18.47* ${ }^{4}$	4.79	6.78	13.45*5	9.47
$V \times$ D	1 (0)		3.43	2.14	29.44**	0.53
$\mathrm{V} \times \mathrm{H}$	1 (1)	0.40	$5.37 * 5$	0.92	1.75	1.01
H \times T	5 (5)	1.20	10.07	3.87	2.73	5.49
H \times D	1 (0)		1.68	2.27	$15.78{ }^{\circ}$	4.80
$\mathrm{V} \times \mathrm{T}$	5 (5)	4.4	2.54	18.7904	1.84	5.57
D \times T	5 (0)		2.32	8.38	7.05	2.77
D \times T $\times \mathrm{H}$	5 (0)		2.73	1.52	0.72	0.90
HxTx V	5 (5)	1.60	7.65	3.67	2.58	2.64
$\mathrm{D} \times \mathrm{V} \times \mathrm{H}$	I (0)		0.00	0.92	0.84	10.81*
$\mathrm{V} \times \mathrm{D} \times \mathrm{T}$	5 (0)		1.86	2.37	4.04	2.67
V $\times \mathrm{D} \times \mathrm{H} \times \mathrm{T}$	5		5.25	8.24	1.89	10.24
Error	(34)	39.36*5				

Values in parentheses indioate the number of degrees of froedom for Trial C-1.
ostatistioally signifioant at the 0.1 per cent level.

- Whe effeots of distanoes were not determinod in Trial C-l beoause all of the test fixtures were inadvertently placed 20 feet upwind of each sampling array. The analysis aotually made was a three-way analysis of varianse with two observations per cell. In Trial C-3, the distances were doubled (se日 text); in Trial C-4, the test design was followed improperly, and, as a result, the data oould not be analyzed.
${ }^{4}$ Statistioally significant at the 1.0 per oent level.
- Statistically signifioant at the 5.0 per cent Ievel.

TABLR 6: Proportions of Hosts Froeeding the Median Bite Number Summarized Over Time and Host Distance and Segregated With Respect to Veotor/Host Ratio and Host Conoentration for Trials G-1 through C-6, BMLDHRTHRR-II, Bio 531 (CONFIDHNTILAL)

VECTOR/HOST RATIO	PROPORTION OF HOSTS HXCMEDING THR MGDIAN BIITG NOMBER WITH RESPECT TO THE' INDICATHD VARIATIONS		
	Host Concentration		Average
	$\mathrm{H}_{1}=4$	$\mathrm{H}_{2}=26$	
		Trial C-I	
$\mathrm{V}_{1}=10: 1$	0.33	0.13	0.18
$\mathrm{V}_{2}=100: 1$	0.88	0.75	0.78
Average	0.60	0.44	0.48
		Trial C-2	
$\mathrm{V}_{1}=10: 1$	0.21	0.21	0.21
$\mathrm{V}_{2}=100: 1$	0.83	0.57	0.62
Average	0.52	0.39	0.42
		Trial C-3	
$\mathrm{V}_{1}=10: 1$	0.33	0.24	0.25
$\mathrm{V}_{2}=100: 1$	0.94	0.73	0.78
Average	0.64	0.48	0.52
		Trial C-5	
$\mathrm{V}_{1}=10: 1$	0.08	0.31	0.26
$\mathrm{V}_{2}=100: 1$	0.69	0.78	0.76
Average	0.37	0.55	0.51
		Trial C-6	
$\mathrm{v}_{1}=10: 1$	0.27	0.33	0.32
$v_{2}=100: 1$	0.77	0.95	0.91
Average	0.52	0.64	0.61

Page 24
TABLE 7: Summary of Total Number of Bites Reooived Segregated With Respeot to Veotor/Hosit Ratio, Phase C, Trials 1 through 6, BELLNHITHRR-II, Bio 531 (CONFIDRNTIAL)

TRIAL NUMBER	TOTAL NUMBER OF BITMSRECEIVED		RATIO OF TOTAL NUMBBR OF BITES RECEIVED	PERCENTAGE OF HOSTS RECEIVING ONE OR MORE BIIES (\%)	
	10:1 Veotor/ Host Ratio	100:1 Veotor/ Host Ratio	(10:1 veotor/Host Ratio: 100:1 Veotor/Host Ratio)	$10 / 1$ Vector/ Host Ratio	100/1 Veotor/ Host Ratio
C-1	85	887	1:10.4	40	98
C-2	66	646	1: 9.8	60	95
C-3	110	1516	$1: 13.8$	68	98
C-5	108	1498	$1: 13.9$	62	90
C-6	185	1735	1: 9.4	72	100

was not generally the case in the five trials. In Trials C-1, C-2, and C-3, the lower host conoentration squares exhibited greater biting activity, signifioantly so in Trials C-1 and C-3. In Trials C-5 and C-6, the squares contajning the larger number of hosts exhibited signifioantly greater biting aotivity. As a result of these oontradiotory ifidings, a deoision at this time concerning the effeots of host conoentration on biting aotivity must be deemed premature.

Effeot of Host Distance
(c) As indioated by the results of the ohi-square analyses given in Table 5, only in Trial C-3 were the offeots of host distance upon biting aotivity significantly different. In this trial, however, the actual host distanoes were doubled--the low level from 20 to 40 feet and the high level from 100 to 200 feet. (This ohange was made as a result of the numarous complaints from the host samplers oonoerning the high biting aotivity in the two previously conducted field trials--Trials B-2 and D-2). Thus, the results of these five trials suggest that under the speoific oonditions oncountered there is little difference in the biting aotivity at distanoes up to 100 feet from the release point, but that optimum biting aotivity occurs at distances less than 200 feet. This finding is similar to the finding of Phase B.

PHASE D
(c) Indoor biting rate studies at Fort Detriok, Frederiok, Maryland, (4) involving simulated sleoping (sitting), standing, and walking hosts demonstrated that more bites were received indoors as the level of human aotivity decreased. In BELLWETHRR-I, the outdoor biting assessments had all been made with the men seated and relatively motionless. Phase D of BELLNETHER-II was designed to ascertain the effeot of overt movement of the hosts upon the outdoor biting aotivity of this veotor.
(U) In eaoh trial, three groups of three l5-foot radius oiroles; 0.5 mile apart on parallel orosswind lines, were looated and soribed, and 10 hosts were positioned equidistantly along eaoh oiroumference. Conourrent relesses of 100 veotors were made in theloenter of each of the oiroles, and the resultant biting aotivity was assessed. In each line group, the oircles were designated A, B, and C (see Fig. 6). In the A oiroles, the men were seated on the ground and remained relatively motionless. In the B oiroles, the hosts walked around their positions, talked, and otherwise oocupied themselves in motion-assooiated aotivity: In the C oiroles, the hosts were seated for the first 5 minutes, walked, talked, and moved around for the seoond 5 minutes, were seated for the next 5 minutes, and so on unitil the end of the 30 -minute sampling.

Fig. 6. - Grid array for Phase D, BELHWETHRR-II.
(U) The number of bites reoeived in eaoh oonseoutive 5-minute period was recorded by each of the 90 hosts, so that there was a total of 540 host-time units: The number of bites obtained in each of these 540 units was reoorded, and the median of these numbers is the so called medien bite number.
(U) For every time unit, eaoh of the nine oiroles produoed a number-namely, the proportion of hosts on that oirole whose reoorded bites exoeeded the median bite number. An analysis of varianoe based on the twoway oross olassification of time and host aotivity was then performed on the proportions obtained in eaoh trial, and the test of signifioanoe for each oomponent was made by means of the F distribution. The results of these analyses are given in Table 8.

TABL冎 8：Analysis of Variance of Proportions Exceeding Median Bite Number，Trials D－I through D－3，BELLWETHER－II，Bio 531 （CONFIDENTIAL）

160 veotors；consequently，the data obtained at these oiroles were not used in the analysis．
－Degrees of freedom．
${ }^{3}$ Statistically significant at the i．O per cent level．
（U）As shown in Table 8，host activity（H）and its interaction with time（ $\mathrm{H} \times \mathrm{T}$ ）were non－signifioant in all three trials，but time，by itself， was highly significant．For all three trials，vector biting activity was at a maximum in the first time period and steadily declined thereafter． This trend－a decrease in biting activity with an increase in time－－was generally true for all B BLIWETHER－I and－II oirole－type trials．
（C）As compared to the Fort Detriok（4）findings where increased host activity was associated with decreased biting activity，in every one of these three trials host activity，although not statistically significant， showed the C－ciroles（alternating activity－nonaotivity）with the highest and the B－oiroles（continuous motion）with the lowest biting activity． That these results were not statistically significant is perhaps at least partly due to the paucity of oirole replication and the high＂inter－oirole＂ variation．This latter variation may have been induced by meteorological differences from one site to another．（In ea oh trial，the average wind speed difference between the two meteorological stations exceeded 1 mile per hour．）．

PHASE E

（U）The three trials of Phase \mathbb{F} were conducted to investigate methods of placement of human samplers in a built－up area and to evaluate，in part，
veotor persistency in a desert built-up area. For this phase, 47 stations ${ }^{2}$ in Granite Peak Installation Number 2 (GPI-2) were used. At eaoh station two positions were designated, one near a building, vehiole, or other struoture (Group I) and the other position in an open area 30 foet away from that struoture (Group II). A randomly seleoted host (from the 94 available) was placed at each of the 94 positions so that the hosts were olassified by station and group.
(U) In order to oompare biting aotivity in different seotions of the test area, GPI-2 was somewhat arbitrarily divided into eight sub-areas, as shown in Figure 7. This was acoomplishod using seven groupings of buildings and an additional looation for the parked troop vehicies (Area H).
(U) In each trial, 5000 veotors were released off target at a distance of approximately 100 yards upwind of the nearest building. Release time was either in the early morning or late afternoon and when the temperature was at least $65^{\circ} \mathrm{F}$. Bites received by each host were recorded for eaoh 5minute interval, and sampling was oonduoted from the time of release to the time when biting appreaiably slaokened. In addition, the hosts returned to sample the area during the following one or two orepusouler periods.
(U) Three Phase F trials were oonduoted; however, only one, Trial E-2, generated sufficient data for analysis. In Trial E-1 a oonfusion in regard to the beginning and length of sampling time produoed unreliable data, while, in Trial r-3, anomalously behaving veotors (see DISCUSSION seotion) yielded very few bites, and no meaningiul analysis of the data was possible.
(U) An analysis of varianoe, based on the four-way oross olassifioation of time, area, group, and station (paired Group I and II positions), was performed on the number of bites obtained in Trial E-2, weighting the total number of bites obtained in each area acoording to the number of hosts involved. The results of this analysis are given in Table 9.

Variability Among Areas

(C) As shown in Table 9, no signifioant differenoe in biting aotivity oould be deteoted among areas. The variance among stations within areas (Error A), however, was quite large, and, consequently, the test of signifioanoe, although appropriate, was not sensitive. ${ }^{3}$ Therefore, biting aotivity among the various areas was empirically examined. Figure 8 shows the average number of bites per host-time unit in Trial $\mathbb{W - 2}$ in eaoh of the
${ }^{2}(U)$ This total was later reduoed to 40 after the oompletion of Trial E-I. This reduotion resulted in removing oertain stations located near the release point where too many bites hed been reoeived (Stations 4, 5, 6, and 7), and at the north meteorological station where no bites had been reported (Stations 1, 2, and 3).
${ }^{3}$ (U) It is not surprising that Error A is large, sinoe the stations within areas were not ohosen as random samples; on the oontrary, hosts were positioned at the expected extremes in order to gain information ooncerning the behavior of the test veotors.

Fig. 7. - Map of GPI-2 area showing sampling stations and areas, Phase \mathbb{F}, BELLNETHER-II.

Fig. 8. - Average number of bites per host time unit, Trial E-2, BELLWETHER-II.

TABLE 9: Analysis of Varianoe of the Numbers of Bites Received, Trial E-2, BELLWHTHRR-II, Bio 531. (CONFIDENTIAL)

SOURCE OF VARIATION	$\begin{aligned} & \text { DEGRHES OF } \\ & \text { FRGHDOM } \end{aligned}$	$\begin{gathered} \text { MEAN } \\ \text { SQUARE } \end{gathered}$	F-VALUE
Areas, A	7	205.289	1.94
S(Stations)/A (Error A)	32	106.070	
Groups (Group I versus Group II), G	1	230.414	15.10 *
$G \times A$	7	57.078	3.74*
$G \times S / A$ (Error B)	32	15.260	
Time, T	13	39.766	8.20*
T \times A	91	12.383	2.55*
T \times G	13	4.859	1.00
T \times S/A (Error C)	416	4.847	
T \times G \times A	91	9.793	$4.01 *$
$T \times G \times S / A$ (Error D)	416	2.440	
Total	1119		

Statistically significant at the 1.0 per oent level.
eight areas together with the release point and general wind direotion prevailing during the 70 minutes of initial sampling (see also Figs. 9 through 12). ${ }^{4}$ It may be seen that biting aotivity was greatest in those

[^1]

areas (A, B, and D) direotly downwind from the release point and decreased with an inorease in orosswind distanoe. Since this was generally true for the later as well as the initial sampling periods, it indicated that the veotors did not distribute themselves evenly throughout the built-up area.
(c) It should be noted that the southeast windflow moved the mosquitoes from the release point successively through Areas D, B, and A, and that the biting aotivity (average number of bites per host-time unit) inoreased with an inorease in downwind distance. These two faots lend strong support to the oonolusion reaohed in Phase B that intervening hosts do not interfere with the veotor's downind spread.

Variability Among Stations Within Aroas

(U) Figure 13 illustrates the variability in the total biting aotivity reported among stations (Group I + Group II) within Area B in the initial sampling period. Although other areas showed similar variability, Area B was ohosen since it contained more stations and had more reported bites. In addition, the distribution of bites in Area B, oontrary to that observed in other areas, was unexpeotedly systematic, and it was felt that these data should be partioularly noted.
(c) It may be seen in Figure 13 that the total number of bites obtained at stations in Area B varied considerably, ranging from 0 at Station 15 to 254 at Station 20. Further, the total number of bites obtained at each of the stations in the southern seotion of Area B (Stations 8 through 11 and 19 through 23) was relatively high; while, in oomparison, very few bites were reoorded at stations to the north (Stations 12 through 17). The assumed general wind flow (see Footnote 4, above) probably direoted a majority of the veotors to the southern part of Area B. The presence of the rows of generators on the southern loop road (see Fig. 14) would also oontribute to this. When the veotors reached Area B, the orientation of the buildings may have hindered the spread of the veotors to the northern stations. However, other faotors, suoh as flight in the orosswind direotion, terrain slope, host density, or a oombination of these or other faotors might equally explain the results. Therefore, at present, the exaot reason for the observed laok of uniformity in the distribution of bites throughout the area is not known.

Effeot of Position (Group I versus Group II)

(c) The results of the analysis of varianoe (Table 9) indioated that there was a significant difference between the number of bites obtained at positions looated near struotures (Group I) and those located in open areas (Group II). Table 10 shows that the average number of bites per host-time unit was approximately twice as large for the Group I as for the Group II positions (Column 17 and 18); however, the magnitude of the differenoe changed significantly with area. If the areas where higher biting occurred are examined (Areas A, B, and D), it may be seen that in Area A approximately three times as many bites were obtained at Group I positions

O sampling atation 30 feet Irom building (Group II)

sampling atation next to building (Group I)
8 vohiole
8 station number
(2) Total oount per atation

Rolative biting eotivity roported by Group I and II hosts

STATION	TOTAL BITMS	
NOMBER	Group I	Group II
8	30	6
9	71	1
10	126	92
11	107	33
12	13	8
13	0	2
14	5	0
15	0	0
16	9	8
17	0	8
18	11	10
19	4	23
20	152	202
21	13	79
22	67	45
23	31	18

Fig. 13. - Map showing the variability in biting activity (Group I + Group II) reported by stations in Area B for the initibl sampling period, Trial B-2, BELLNETHER-II.

欮fact af tixme

TABLI 10: Veotor Biting Aotivity Segregated With Respect to Area, Group, and Time, Trial E-2, BELMETHPR-II, Bio 531 (CONFIDENILAL)

$\begin{gathered} \text { TIME } \\ \text { (Minutes) } \end{gathered}$	AVERAGZ NUMBRR OF GITEE PER HOST IN INDICATED GROUP OF IIDICATED SUE-AREA																AVERAGE NUMBER OF BITES PER HOST		$\begin{gathered} \text { AVERRAGZ NUMBER } \\ \text { OF BITES PER } \\ \text { TDG PERIOD/ } \\ \text { TRIAL } \\ \hline \end{gathered}$
	Area A		Ares		Area		Area D		Ares 3		Area F		Area G		Area H				
	I	II	Group I 1 Group II																
0. 5	0.00	0.00	1.56	2.19	0.00	0.00	1.50	0.00	0.00	0.00	0.00	0.00	0.86	0.29	0.00	0.00	0.85	0.92	0.89
5-10	0.00	0.00	2.75	2.43	0.00	0.00	5.00	1.00	0.00	0.00	0.00	0.00	1.86	0.00	0.00	0.00	1.58	1.02	1.35
10-25	9.00	1.00	3.88	2.43	0.00	0.00	3.50	1.00	0.00	0.00	0.12	0.00	2.57	0.00	0.00	0.00	2.42	1.05	1.76
15-20	12.00	2.00	4.94	3.44	0.50	0.50	4.00	6.00	0.50	0.00	0.25	0.00	2.57	0.71	0.50	0.00	2.90	1.85	2.38
20-25	33.00	1.00	4.19	3.38	3.00	0.00	6.00	2.00	0.00	0.00	0.00	0.00	3.29	0.29	0.00	0.00	3.50	1.52	2.51
25-30	21.00	1.00	4.75	3.12	4.00	0.50	4.50	6.50	0.50	0.00	0.12	0.00	3.00	0.43	0.00	0.50	3.18	1.72	2.45
30-35	7.00	4.00	3.62	2.06	2.00	0.00	4.00	4.00	0.50	0.00	0.12	0.12	0.71	0.43	0.00	0.50	2.10	1.25	1.68
35-40	10.00	3.00	3.31	2.19	3.00	0.00	2.50	1.50	0.00	0.00	0.25	0.00	1.00	1.00	0.00	1.00	2.08	1.25	1.66
40-45	3.00	5.00	2.44	1.88	1.50	0.00	2.50	2.50	0.00	0.00	0.50	0.00	2.00	0.57	0.00	0.00	1.07	1.10	1.40
45-50	0.00	2.00	1.94	0.75	2.00	0.00	2.50	0.50	0.00	0.00	0.00	0.00	1.29	0.29	0.00	0.00	1.18	0.42	0.80
50-55	0.00	1.00	2.38	0.81	1.50	0.00	0.50	0.00	0.00	0.00	0.00	0.00	2.71	0.00	1.00	0.00	1.58	0.35	0.96
55-60	0.00	3.00	2.06	0.69	0.00	0.00	2.00	0.50	0.00	0.00	0.00	0.00	1.57	0.14	0.00	0.00	1.20	0.40	0.76
60-65	0.00	2.00	0.88	0.12	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	3.00	0.14	0.00	0.00	0.88	0.12	0.50
65-70	0.00	4.00	1.25	0.12	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	1.00	0.29	0.00	0.00	0.68	0.20	0.44
Average Number of Bites Per Host-TIme Unit	6.07	2.00	2.85	1.83	1.18	0.07	2.75	1.82	0.11	0.00	0.10	0.01	1.89	0.33	0.11	0.14	1.85	0.94	1.40
Average Por Arbe	4.04		2.34		0.62		2.28		0.05		0.05		1.11		0.12				
$\begin{aligned} & \text { Coliun } \\ & \text { Number } \end{aligned}$	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19

AREA	A		B		B		B			B		B		B		B		B		B	
STATION	24		8		9		10			11		12		13		14		15		16	
GROUP	I	II	I	II	I	II	I		II	I	II										
Time (minutes)																					
0-5	0	0	0	0	1	0	0		0	0	5	0	0	0	0	0	0	0	0	0	0
5-10	0	0	0	0	3	0	5		0	4	3	0	0	0	0	0	0	0	0	1	0
10-15	9	1	2	0	7	0	12		0	11	5	0	1	0	0	0	0	0	0	0	0
15-20	12	1	4	0	6	1.	20		0	18	5	2	0	0	1	0	0	0	0	0	0
20-25	33	1	3	1	6	0	20		16	10	2	1	1	0	0	1	0	0	0	0	0
25-30	11	1	5	1	8	0	17		17	14	4	2	0	0	0	1	0	0	0	1	0
30-35	7	4	4	0	8	0	14		8	7	3	1	0	0	0	0	0	0	0	2	0
35-40	10	3	2	1	9	0	12		14	6	2	2	0	0	0	0	0	0	0	1	2
40-45	3	5	3	2	6	0	5		18	δ	0	1	0	0	0	0	0	0	0	1	0
45-50	0	2	3	0	3	0	6		7	7	1	1	0	0	0	0	0	0	0	0	0
50-55	0	1	2	0	4	0	5		5	10	2	1	0	0	0	1	0	0	0	2	0
55-60	0	3	1	0	5	0	5		7	6	1	2	0	0	0	2	0	0	0	1	0
60-65	0	2	1	0	2	0	2		0	4	0	0	0	0	0	0	0	0	0	0	0
65-70	0	4	0	2	3	0	3		0	4	0	0	0	0	0	0	0	0	0	0	0
Group Totals	85	28	30	6	71	1	126		92	107	33	13	2	0	1	5	0	0	0	9	2
Station Total	113		36		72		218			140		15		1		5		0		11	

TABLE 11: (Continued)

AREA	B		B		B		B		B		B		B		C		C		F	
STATICN	17		18		19		20		21		22		23		25		26		27	
GROUP	I	II	1	II	I	II	I	II	I	IT	I	II								
Time (mjnutes)																				
0-5	0	0	0	0	0	0	20	16	3	11	1	3	0	0	0	0	0	0	0	0
5-10	0	1	1	0	0	0	17	15	2	14	10	3	1	3	0	0	0	0	0	0
20-15	0	0	2	2	0	2	17	12	0	8	7	8	4	1	0	0	0	0	0	0
15-20	0	1	0	3	0	19	15	8	0	10	8	5	6	2	1	1	0	0	1	0
20-25	0	0	0	0	3	2	13	10	0	13	8	9	2	0	6	0	0	0	0	0
25-30	0	0	2	0	1	0	15	12	2	7	5	6	3	3	8	1	0	0	0	0
30-35	0	0	1	0	0	0	12	8	0	7	7	4	2	3	4	0	0	0	0	0
35-40	0	0	0	0	0	0	13	8	2	5	4	3	2	0	6	0	0	0	0	0
40-45	0	0	2	0	0	0	10	6	0	2	3	2	2	0	3	0	0	0	0	0
45-50	0	0	0	0	0	0	9	4	1	0	0	0	1	0	2	0	0	0	0	0
50-55	0	0	0	5	0	0	7	0	3	0	1	1	2	0	3	0	0	0	0	0
55-60	0	0	1	0	0	0	3	3	0	0	4	0	3	0	0	0	0	0	0	0
60-65	0	0	0	0	0	0	0	0	0	2	4	0	1	0	0	0	0	0	0	0
65-70	0	0	2	0	0	0	1	0	0	0	5	1	2	0	0	0	0	0	0	0
Grioup Totals	0	2	11	10	4	23	152	102	13	79	67	45	31	12	33	2	0	0	1	0
Station Total								4						3		5		0		

TABLE 11: Sumary of Biting Data Obtained in Trial m-2, BELLHETHER-II, B10 531 (Continuad)

TABLE 11: (Conoluded)

ARSA	G		G		G		G		G		[E		H		H		Total	Total
STATION	39		40		41		42		43.		47		48		49		50		A	B
GROUP	I	II	I	II	I	III	I	II												
Time (minutes)																				
0-5	0	0	0	0	0	0	0	0	3	1	0	0	0	0	0	0	0	0	34	37
5-10	0	0	2	0	0	0	0	0	5	0	0	0	0	0	0	0	0	0	67	41
10-15	0	0	1	0	0	0	0	0	4	0	0	0	0	0	0	0	0	0	97	42
15-20	0	0	3	1	0	0	0	2	1	1	1	0	0	0	1	0	0	0	116	74
20-25	2	0	4	0	1	0	10	1	1	0	0	0	0	0	0	0	0	0	140	61
25-30	7	0	1	2	2	0	8	0	0	0	1	0	0	0	0	1	0	0	127	69
30-35	2	0	0	1	0	0	0	1	0	0	1	0	0	0	0	1	0	0	84	50
35-40	0	4	0	2	1	0	0	0	0	0	0	0	0	0	0	2	0	0	83	50
40-45	5	3	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	68	44
45-50	2	2	2	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	47	17
50-55	4	0	4	0	1	0	0	0	0	0	0	0	0	0	2	0	0	0	63	14
55-60	0	0	3	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	48	16
60-65	1	0	4	0	1	0	10	0	0	0	0	0	0	0	0	0	0	0	35	5
65-70	1	0	1	0	2	0	0	1	0	0	0	0	0	0	0	0	0	0	27	8
Group Totals	24	9	25	8	8	0	28	5	14	2	3	0	0	0	3	4	0	0	7036	528
Station Total		33								6		3								

Variability Among Stations
(U) From an empirioal examination of the various stations, it was evident that there existed considerable differences among them, and, moreover, it was not reasonable to expect similar biting aotivity. Two important differences in stations were:

1. The station location in relation to the release point and the general wind flow, and
2. The amount of proteotion from the wind that the building offered to the mosquitoes.

These differences are depioted, in part, by the seleoted stations shown in Figures 15 through 19.
(C) Station 20 (Fig. 15) was located near and downwind from the release point, while Stations 33 and 34 (Fig. 16) and Stations 47 and 48 (Fig. 17) were looated at both greater distances and orosswind from the release point. A total of 254 bites was recorded at Station 20 as compared to $0,0,3$, and 0 bites at Stations $33,34,47$, and 48, respeotively. This illustrates a general observation of Trial a-2-namely, that high vector biting aotivity was usually found only near and/or downwind from the release point.
(C) Station 24 (Fig. 18) was looatod downwind and at a distanoe approximately twioe as far from the release point as were Stations 33 and 34 ($F i \mathrm{~g}$. 16). A total of 113 bites was obtained at Station 24. Comparing this result with the results obtained at Stations 33 and 34 illustrates the general finding that, under the oonditions of this trial, veotor biting aotivity had a higher correlation with downwind location than with distance from the release point. It should also be noted that Station 24 was approximately 1400 feet from the release point, an effeotive distance considerably greater than one would expect from examining the Phase B and C data.
(C) A total of 79 bites was obtained at Station 37, 75 of whioh were reooived at the position near the building. This comparison indicates that alcoves (see Fig. 19) offering shelter from the wind are highly attraotive to the vectors. In support of this view, it may also be pointed out that at the remaining six stations of Area G, possessing no alcoves, an average of only 23 bites per station was obtained.

Rosults of the Seoond Crepusoular Period of Trial E-2
(U) In the morning (4 Ootober 1960) following the evening veotor release of Trial E-2, the troops retumed to their assigned positions in the GPI-2 area. Bites reoeived by each host were reoorded for each 5 -minute interval, and sampling was conducted from 0630 to 0830 MST and from 0920 to 1000 MST .

(UNCLASSIETSD)

(C) Only one bite was obtained throughout the test area from 0630 to $0800 \mathrm{MST} ; ~ h o w e v e r, ~ d u r i n g ~ t h i s ~ t i m e, ~ t h e ~ a i r ~ t e m p e r a t u r e s ~ r e c o r d e d ~$ at 0.5 meter averaged only $53.2^{\circ} \mathrm{F}$. From 0800 to 0830 MST ; the temperature increased to an average of $59.2^{\circ} \mathrm{F}$, and in this interval a total of 25 bites was recorded.
(C) From 0920 to 1000 MST , with an average temperature of $72.6^{\circ} \mathrm{F}$, a totel of 128 bites was obtained. These results, segregated with respeot to time and group, are presented in Table 12.

TABLE 12: Biting Results Obtained from 0920 to 1000 MST Segregated With Respeot to Time and Group, Trisl $\mathrm{H}-2$, BELWETHIRR-II, Bio 531 (CONITIDENIIAL)

$\begin{aligned} & \text { TIMEB INTERVAL } \\ & \text { (MST) } \end{aligned}$	TOTAL NUMBER OF BITHS PER INDICATRD GROUP		TOTAL NUMBER OF BIIES
	Group I	Group II	
0920-0925	13	4	17
0925-0930	4	7	21
0930-0935	13	12	25
0935-0940	15	4	19
09 40-0945	11	4	15
0945-0950	7	0	7
0950-0955	20	3	23
0955-1000	8	3	11
TOTAL	91	37	128

(U) As a result of comparing this low vector biting aotivity with that obtained during the previous crepusoular period, sampling was terminated at 1000 MST and was not reinstituted that evening.

PHASE F

(C) The purpose of the Phase Frials was to determine the average longevity of the A. aegypti mosquito when exposed to ambient desert conditions. To answer this objective, four l00-veotor exposure cage cones, two containing guinea-pig-fed mosquitoes and two with starved mosquitoes, were exposed to ambient desert conditions at ground level. One cage of guinea-pig-fed and one of starved vectors were placed in relatively dense, indigenous vegetation; the other two cages were positioned in the open nearby. Observations were to be made as to the total number of survivors at the end of each hour for a period of 24 hours or until at least 50 per cent of the vectors had died. Four trials were originally scheduled. These trials were conducted near Baker Laboratory under the direotion of the Test Officer.
(U) Two Phase F trials were oompleted, both of whioh were subsequently classified as aborts. This resulted primarily beoause 100 veotors proved to be too large a number in one cage for adequately olassifying them as to either dead or alive without removing the dead from the oage. In attempting to remove the dead mosquitoes from the oage, the procedure followed was to invert the oone, thereby shaking the dead into the oap and (hopefully) inducing the live ones to fiy to the upper parts of the oone. However, a number of live vectors remained in the oap area and escaped when it was removed. As a result, it was impossible to determine the peroontage of veotors surviving.

DISCUSSION

(c) BELLMETHRR-II was oonduoted primarily to develop a field test teohnology that would be useful for the testing of various arthropod veotor systems. Approximately 100 military personnel from the 45 th and 46th Chemioal Companies of the and Chemioal Battalion (Smoke Generator) were assigned to be samplers in these trials. The laok of seourity olearanoe for the military personnel posed a diffioult situation. The men oould not be expeoted to perform their tasks to the best of their ability when the test design did not make sense to them; yot the purposes of these prooedures oould not safely be made meaningful to uncleared personnel.
(v) Other field test teohnology problems that developed in BELWETHERII included meteorological instrumentation and laboratory prooedures.
(U) The meteorologioal stations were both too few and too far away from the points of primary interest--the oenters of the oiroles, squares, and areas. The meteorologioal stations had been moved away from the testing network to prevent their buik and personnel from distorting the test results. During periods of large-soale weather phenomena--i.e., pre- and post-frontal passages, strong low pressure systems looated olose by, eto.-the wind movements are relatively steady and olose-in meteorologioal support is not oritioal. However, the requirements for low wind speeds in field testing mosquitoes would usually rule out general, steady wind flows; therefore, light winds, variable in both speed and direotion, are the rule. Sinoe mosquitoes have been found to be so extremely sensitive to winds (see 2), only data releoting the variable wind movements to whioh the veotors are aotually exposed will yield information resolving muoh of the variability oocurring between trials. Beoause of the imperative need for reduoing the exoessive trial-to-trial variability, it is neoessary that close-in meteorological support be furnished for future fiold trials.
(U) The second problem was laboratory control. The general prooedures followed for rearing the test veotors used in the DPG tests have been for Baker Laboratory to grow the mosquitoes fromegg papers furnished by Biolabs. When a batch of larvae reaohed the pupal stage, the sexes were separated and female pupae were oounted out into 10θ oream oartons of
a size dependent upon the partioular trial for whioh they were soheduled. Here they were held, fed when necessary, and then used in the various trials. The veotors were required to be 6 to 10 days of age (as adults) and starved for 12 to 24 hours prior to use.
(U) Under the belief that these general laboratory procedures would yield a standard produot, no speoifio laboretory controls were made. However, cortain anomalous veotor behavior situations were observed during the oourse of BMLHETHRR-II. In Trial B-3, those mosquitoes released at the oenter of the single 250-foot oirole failed to reach the periphery. Although this probably could have been resolved by having the men; at the end of the trial, move in toward the oenter noting where the mosquitoes were, it was not done. In Irial $\mathrm{f}-3$, the veotors stayed in a ball on the ground at the release point; they were alive but failed to move out. (A footnote to Table XX of Teohnioal Study 7B (4) states that, on a 40mosquito release, "l2 mosquitoes did not leave the floor." This oould be the same phenomenon.) The reasons for this anomalous behavior oould probably have been ascertained had laboratory oontrol batohes of the same lots of vectors been maintained and observed in the inseotary. Since these behavioral anomalies could have developed anywhere from variations in egg papers to the environment imendiately before the trial, tighter laboratory controls are an obvious neoessity and will be implemented in future testing. In addition, sample batohes will also be transported to the field, and, although they will not be released, they will be exposed to the same ambient conditions as the test lots. After the oompletion of the trial, these will be returned to the inseotary and observed. Complete reoords will be kept on all batches and lots. It has proved impossible to f ind any logical reason for the greatly enhanced biting inourred in Trial B-2 (see Table l), and more oomprehensive laboratory control work might possibly have shown the reason(s).
(c) The mosquitoes used in BELLWHTHER-I and -II were reared in an insectary having an $82^{\circ} \mathrm{F}$ temperature and a relative humidity of 80 per oent. While these conditions are ideal for a tropical mosquito soheduled for release under tropioal conditions, the sudden ohange to ambient desert conditions of often widely differing temperatures and muoh lower humidities might constitute a shock to the mosquito's physiological systom. Therefore, pre-trial temperature oonditioning will be investigated prior to and in future testing.
(U) Parker (5), oomenting on the observed differences in the mosquito responses to dry and moist surfaces at different temperatures as contrastingly reported both by him and by Christophers (6), suggests that the subsequent mosquito behavioral patterns were more dependent on the temperature-humidity oonditions during rearing and holding than were generally realized. In both investigations the inseots had been exposed from, or very nearly from, the time of emergence to the temperatures and humidities at which the experiments were later performed: Parker's at $82.4^{\circ} \mathrm{F}\left(28^{\circ} \mathrm{C}\right)$ and 50 to 70 per cent relative humidity and Christophers' at $77.0^{\circ} \mathrm{F}\left(25^{\circ} \mathrm{C}\right)$ and 80 to 90 per oent relative humidity. Parker further suggests that a temperature-humidity differenoe operating before an experiment can so condition the females as to produce the same type of difference in response as can a similar temperature and humidity differenoe operating during the
experiment. These thoughts strongly indioate a further need for additional laboratory work to asoertain the optimum rearing-holding oonditions for different environmental releases.

CONCLUSIONS

(S) From the data generated in BRLLMETHRR-II, and under the speoific conditions encountered, it is conoluded that:

1. In a 30 -minute sampling period, there was no signifioant differenoe in veotor biting aotivity at distanoes up to 100 feet from the release point, but maximum biting aotivity oocurred at distanoes less than 200 feet.
2. Intervening hosts did not interfere with either the veotor's outward spread or biting aotivity.
3. No conolusive findings were generated as to the effeot of host conoentration.
4. When the number of veotors was increased by a faotor of 10, approximately 10 times as many bites were reoeived and the proportion of hosts bitten was inoreased an average of 36 per oent.
5. Veotor biting aotivity showed a tendenoy to be highest When the hosts were alternately in motion and then motionless for recurring 5-minute periods, end to be lowest when the hosts moved oontinuously.
6. Hosts looated near buildings were subjeoted to signifioantly greater veotor biting aotivity than were hosts located in open areas.
7. Veotors did not tend to distribute themselves evenly throughout an isolated built-up area and, further, they did not tend to redistribute themselves evenly during the interims between host oocupations.
8. No conclusive findings were generated as to the optimum sampling duration.
9. No evidenoe of orepusoular-period biting preference was obtained in these trials.
10. No conclusive findings were generated conoerning the average Iongevity of this speoies when exposed to ambient desert conditions.

LITHRATURA CITED

(UNCLASSIFIFD)

1. Letter, GMLRD-A, to Commanding Offioer, Dugway Proving Ground, Utah, 21 June 1960, subject: fintomologioal Field Testing (U). Seoret.
2. Teohnioal Report DPGR 259, Outdoor Mosquito Biting Aotivity Studies, Projeot BHLWHFHMR-I, BW 459 (U), Dugway Proving Ground, Utah, Deoomber 1960, Seoret.
3. Technioal Memorandum Number 9-18, Operation QUICKHENRY, BK 445 Series, Fintomology Division, U. S. Army Chemioal Corps Biologioal Laboratories, Fort Detriok, Frederick, Maryland, June 1960. Seoret.
4. Teohnioal Study 7B, Short Title XYA-8121 (U), Biologioal Werfare Laboratories, Fort Detriok, Frederiok, Marjland, July 1958. Secret.
5. A. H. Parker. The effect of a difference in temperature and humidity on oertain reaotions of female Aedes aegypti (L). Bullotin of fintomological Researoh. Volume 43, 1953, Unclassified.
6. S. R. Christophers. Mosquito repelients, being a report on the work of the Mosquito Repellent Enquiry, Cambridge, 1943-45. Journal of Hygiene, Volume 45, 1947, Unclassified.

APPENDIX A

METEOROLOGICAL DATA
(UNCLASSIFIED)

TABLE 1: Wind Direction and Speed Data for Trial B-1, Bio 531 (UNCLASSIFTED)

TIME INTERVAL (Minutes)	EAST POSITION, 2.0 METERS				WEST POSITION, 2.0 METERS			
	Direction (${ }^{\circ}$)		Speed (mph)		$\begin{gathered} \text { Direction } \\ \left({ }^{\circ}\right) \end{gathered}$		$\begin{aligned} & \text { Speed } \\ & (\mathrm{mph}) \end{aligned}$	
	avg	range	avg	range	avg	renge	avg	range
Z-5 to Z	198	164-226	5.8	2.4-9.1	097	063-138	6.7	2.7-12.4
Z to $\mathrm{Z}+5$	201	088-315	4.6	1.2-13.6	122	072-176	6.9	1.3-14.2
$\mathrm{Z}+5$ to $\mathrm{Z}+10$	156	072-252	4.4	1.4-13.2	074	000-203	5.3	-0.5-10.0
$\mathrm{Z}+10$ to $\mathrm{Z}+15$	121	041-204	6.2	1.0-13.5	095	355-173	4.8	1.2-9.4
$\mathrm{Z}+15$ to $\mathrm{Z}+20$	158	007-324	3.3	$<0.5-7.0$	177	123-237	8.4	4.6-13.1
$\mathrm{Z}+20$ to $\mathrm{Z}+25$	147	093-192	6.2	2.5-10.6	154	108-214	6.2	2.3-12.0
$\mathrm{Z}+25$ to $\mathrm{Z}+30$	194	156-264	6.2	2.5-10.3	147	099-192	7.6	3.0-12.6
$\mathrm{Z}+30$ to $\mathrm{Z}+35$	169	135-264	6.7	2.5-13.6	138	077-176	8.8	$3.5->15.0$
$\mathrm{Z}+35$ to $\mathrm{Z}+40$	182	106-221	6.7	4.3-13.1	144	081-196	5.7	2.4-10.8
$\mathrm{Z}+40$ to $\mathrm{Z}+45$	178	129-217	5.7	3.1 - 10.4	147	084-198	6.2	2.1-11.1
$\mathrm{Z}+45$ to $\mathrm{Z}+50$	183	126-259	6.5	$1.5-12.1$	158	114-182	7.1	3.9-12.8
$\mathrm{Z}+50$ to $\mathrm{Z}+55$	180	086-239	9.3	4.0-13.9	146	081-204	8.2	2.3-13.6
$\mathrm{Z}+55$ to $\mathrm{Z}+60$	117	086-150	8.8	5.4-12.5	147	090-182	9.6	4.1-14.8
Average	168		6.2		134		7.0	

This information was taken on 6 September 1960 at the indicated positions. Function times were 1405,1410 , and 1428 MST. Z denotes 1410 MST Punction time.

TABLE 2：Cloud Cover，Temperature，and Relative Humidity Data for Trial B－1，Bio 531（UNCLASSIFIED）

TINH	$\begin{aligned} & \text { CLOUD COVER } \\ & \text { (loths of sky } \\ & \text { oovered) } \end{aligned}$	TEMPERATURE$\left({ }^{\circ} \mathrm{F}\right)$		RELATIVE HOMIDITY （\％）
		Ground	0.5 Metar	
Z＋10	4	89.9	90.3	23
Z＋5	4	89.8	85.7	23
Z＋20	5	90.0	92.0	20
Z＋35	5	90.1	90.8	21
Z＋50	4	90.0	92.0	20
Z＋60	4	90.1	92.6	19
Average		90.0	90.6	21.0

These data were taken at the East Position．

TABLE 3：Ultraviolet Radiation Data，Trial B－1，Bio 531 （UNCLASSIFIED）

$\begin{aligned} & \text { TMME } \\ & \text { INTERVAL } \\ & \text { (MST) } \end{aligned}$	TOTAL ULTRAVIOIWT ENERGY FROM 2000 to 3675 \＆ （Miorowatts per seoond per om ${ }^{2}$ ）
1401 to 1406	33075
1406 to 1411	44100
1411 to 1417	42875
1417 to 1422	80850
1422 to 1425	49000
1425 to 1430	78400
1430 to 1435	74725
1435 to 1440	75950
1440 to 1445	75950
1445 to 1451	84525
1451 to 1455	52675
1455 to 1500	72275
1500 to 1505	63700
1505 to 1510	67375
Average	73，962

TABLE 4: Wind Direction and Speed Data for Trial B-2, Bio 531 (UNCLASSIFIED)

TIME INTERVAL (Minutes)	EAST POSITION, 2.0 METHRS				WEST POSITION, 2.0 METERS			
	Direotion $\left({ }^{\circ}\right)$		Speod (mph)		$\begin{gathered} \text { Direotion } \\ \left({ }^{\circ}\right) \end{gathered}$		Speed (mph)	
	avg	range	avg	range	avg	range	avg	range
Z-5 to Z	355	180-171	2.8	$<0.5-7.2$	348	309-039	5.6	1.0-10.2
Z to $\mathrm{Z}+5$	345	295-064	2.6	c0.5-5.4	216	324-243	1.6	0.5-6.2
$\mathrm{Z}+5$ to $\mathrm{Z}+10$	032	342-079	2.2	co.5-4.2	337	196-020	3.6	0.5-6.8
$\mathrm{Z}+10$ to $\mathrm{Z}+15$	068	347-126	2.4	0.5-4.8	330	240-015	5.0	1.1-11.0
$\mathrm{Z}+15$ to $\mathrm{Z}+20$	312	232-036	3.4	co.5-7.7	354	262-132	4.6	0.5-9.1
$\mathrm{Z}+20$ to $\mathrm{Z}+25$	005	266-060	2.8	1.0-8.8	280	201-019	4.6	1.2-7.4
Average	037		2.7		311		4.2	

This information was taken on 23 September 1960 at the indioated positions. Function time (Z) was 1132 MST.

TABL\& 5: Cloud Cover, Temperature, and Relative Humidity Date for Trial B-2, Bio 531 (UNCLASSIFIED)

TIME	CLOUD COVER (IOths of sky covered)	$\begin{aligned} & \text { TEMPERATURE } \\ & \left({ }^{\circ} \mathrm{F}\right) \end{aligned}$		RELATIVE HUMIDITY (\%)
		Ground	0.5 Meter	
Hast Position				
Z-32	-*	-	68.9	17
z	-	-	70.8	19
$2+10$	-	-	71.7	15
Z +20	-	-	73.8	14
Z +30	-	-	73.0	15
Average			71.6	16
```West Position```				
Z -32	2	74.5	68.4	25
Z	1	74.5	71.6	20
Z +10	1	72.4	69.2	19
$z+20$	1	70.3	70.7	17
Z +30	1	69.5	71.6	18
Average		72.2	70.3	20

*No data.

TABLE 6: Ultraviolot Radiation Data, Trial B-2, Bio 531 (UNCLASSIFIED)

TIME   INTERVAL   (MST)	TOTAL ULTRAVIOIET ENERGY FROM 2000 to 3675   (Microwatts per second per om2)
1125 to 1130	102,900
1130 to 1135	90,650
1135 to 1140	74,725
1140 to 1145	117,600
1145 to 1150	88,200
1150 to 1155	84,525
1155 to 1200	83,300
Average	

TABLE 7: Wind Direction and Speed Data for Trial B-3, Bio 531 (UNCLASSIFIED)

TIME INTERVAL (Minutes).	NORTH POSTTION, 2.0 MHTERS				SOUTH POSITION, 2.0 MBTERS			
	$\begin{gathered} \text { Direction } \\ \left({ }^{\circ}\right) \end{gathered}$		$\begin{aligned} & \text { Speed } \\ & \text { (mph) } \end{aligned}$		Direction ( ${ }^{\circ}$ )		$\begin{aligned} & \text { Speed } \\ & (\mathrm{mph}) \end{aligned}$	
	avg	range	avg	range	avg	range	avg	range
Z-5 to Z	211	139-273	4.7	1.7-8.0	178	116-265	2.8	0.7-5.9
Z to Z +5	192	114-216	1.9	<0.5-4.0	151	099-183	2.5	0.8-4.6
$\mathrm{Z}+5$ to $\mathrm{Z}+10$	237	100-285	3.8	1.0-6.1	207	124-313	3.1	0.7-6.7
$Z+10$ to $Z+15$	250	194-300	2.1	<0.5-3.9	272	251-324	4.6	2.4-7.1
$\mathrm{Z}+15$ to $\mathrm{Z}+20$	011	185-051	3.8	1.5-7.7	209	099-274	1.9	0.6-5.1
$\mathrm{Z}+20$ to $\mathrm{Z}+25$	048	031-185	1.0	<0.5-2.3	259	136-270	5.0	2.5-6.7
Average	156		2.7		222		3.4	

This information was taken on 19 October 1960 at the indicated positions. Function time (Z) was 1457. MST.

TABLI 8: Cloud Cover, Temperature, and Relative Humidity Data for Trial B-3, B10 531 (UNCLASSIFIED)

TIM	CLOUD COVER (IOths of sky covered)	TEMPERATURH ( ${ }^{\circ} \mathrm{F}$ )		RELATIVE HUMIDITY   (\%)
		Ground	0.5 Meter	
North Position				
Z -10	1	-*	69.4	25
Z	1	-	69.6	24
Z +10	1	-	70.4	17
2 +20	2	-	70.3	24
Z +30	2	-	70.1	23
Average			70.0	23
South Position				
2 -10	1	-	71.0	28
Z	1	-	70.0	28
Z +10	1	-	-	-
Z +20	1	-	69.8	-
Z +30	2	-	69.9	-
Average			70.2	28

*No data.
TABLE 9: Ultraviolat Radiation Data, Trial B-3, Bio 531 (UNCLASSIFIED)

TIME   INTERVAL   (MST)	TOTAL ULTRAVIOLAT ENERGY FROM 2000 to 3675   (Microwatts per second per om2)
1450 to 1455	31,850
1455 to 1500	30,625
1500 to 1505	28,175
1505 to 1510	25,725
1510 to 1515	23,275
1515 to 1520	20,825
1520 to 1525	15,925
1525 to 1530	18,375
Average	24,347

TABLE 10: Wind Direction and Speed Data for Trial C-1, Bio 531 (UNGLASSIFIED)

TIME INTERVAL (Minutes)	EAST POSITION, 2.0 MEHTERS				WEST POSITION, 2.0 METERS			
	$\begin{gathered} \text { Direction } \\ \left({ }^{\circ}\right) \end{gathered}$		$\begin{aligned} & \text { Speed } \\ & (\mathrm{mph}) \end{aligned}$		$\begin{gathered} \text { Direction } \\ \left({ }^{\circ}\right) \end{gathered}$		Speed (mph)	
	avg	range	avg	range	avg	range	avg	range
$\mathrm{Z}-5$ to Z	172	138-197	8.0	1.0-13.0	174	094-228	5.2	$1.1-9.0$
Z to $\mathrm{Z}+5$	198	155-283	6.6	1.2-10.0	192	174-206	7.9	4.6-11.6
$\mathrm{Z}+5$ to $\mathrm{Z}+10$	158	112-213	6.8	3.1-13.1	199	162-225	6.5	4.3-10.0
$\mathrm{Z}+10$ to $\mathrm{Z}+15$	180	136-212	7.4	4.4-11.9	190	155-213	7.0	2.6-12.2
$\mathrm{Z}+15$ to $\mathrm{Z}+20$	185	139-219	8.3	5.0-11.4	181	156-204	7.1	0.8-11.4
$\mathrm{Z}+20$ to $\mathrm{Z}+25$	180	152-220	8.0	5.5-12.8	189	159-209	7.6	1.9-13.7
$\mathrm{Z}+25$ to $\mathrm{Z}+30$	198	143-278	5.8	1.0-11.2	175	151-206	6.8	4.0-12.4
$\mathrm{Z}+30$ to $\mathrm{Z}+35$	208	169-242	7.4	3.8-12.5	162	135-190	6.8	1.8-10.6
Average	185		7.3		183		6.9	

This information was taken on 19 September 1960 at the indicated positions. Function time (Z) was 1140 MST .

TABIE 11: Cloud Cover, Temperature, and Relative Humidity Data for Trial C-1, Bio 531 (UNCLASSIFIED)

TIME	CLOUD COVER (10ths of sky covered)	TEMPERATURE$\left({ }^{\circ} \mathrm{F}\right)$		RELATIVE HJMIDITY   (\%)
		Ground	0.5 Meter	
Fast   Position				
2-10	-*	102.8	84.4	14
2	-	103.1	84.7	15
$2+10$	-	103.7	87.0	11
z +20	-	103.9	87.0	13
z +30	-	104.1	87.2	13
Average		103.5	86.1	13
West Position				
$2+5$	-	103.4	85.0	14
Z +15	-	103.6	84.6	13
z +25	-	103.8	83.8	8
Z +35	-	104.0	84.9	15
Average		103.7	84.6	

*No data.

TABLE 12: Ultraviolet Radiation Data, Trial C-1, Bio 531 (UNCLASSIFIED)

$\begin{gathered} \text { TIME } \\ \text { INTERVAL } \\ \text { (MST) } \\ \hline \end{gathered}$	TOTAL ULTRAVIOLET ENERGY FROM 2000 to $3675 \AA$   (Microwatts per second per $\mathrm{cm}^{2}$ )
1130 to 1135	94,325
1135 to 1141	113,925
1141 to 1145	74,725
1145 to 1150	93,100
1150 to 1155	98,000
1155 to 1200	96,775
1200 to 1205	98,000
1205 to 1210	98,000
1210 to 1215	99,225
Average	96,231

## TABLE 13: Wind Direction and Spe日d Data for Trial C-2, Bio 531 (UNGLASSIFIED)

TIMR INIERVAL (Minutes)	NORTH POSITION, 2.0 METERS				SOUTH POSITION, 2.0 METERS			
	Direction $\left({ }^{\circ}\right)$		Speed (mph)		$\begin{gathered} \text { Direction } \\ \left({ }^{\circ}\right) \end{gathered}$		$\begin{aligned} & \text { Speed } \\ & \text { (mph) } \end{aligned}$	
	avg	range	avg	range	Qv.g	range	avg	range
Z-5 to Z	INOP	IVE	9.5	5.0 ->15.0	3.15	294-339	9.5	4.2-14.8
Z to $Z+5$	319	272-360	5.7	1.6-9.8	318	285-351	6.7	3.2-10.6
$z+5$ to $Z+10$	321	240-063	6.4	1.9-14.5	329	286-007	9.5	5.8-13.3
$2+10$ to $2+15$	328	240-039	6.7	$3.1-13.5$	336	302-011	7.6	1.8-11.1
$Z+15$ to $Z+20$	321	293-348	7.6	3.4-11.7	313	279-344	8.4	5.3-12.7
$Z+20$ to $Z+25$	326	273-352	4.5	1.3-7.7	315	278-330	8.7	4.3-13.1
Z +25 to $Z+30$	311	268-111	3.1	1.2-13.9	347	312-014	8.9	6.6-11.4
Average	321		6.2		325		8.5	

This information was taken on 22 September 1960 at the indicated positions. Funotion time (Z) was 1458 MST.

TABLE 14: Cloud Cover, Temperature, and Relative Humidity Data for Trial C-2, Bio 531 (UNCIASSIFIED)

TIME	$\begin{aligned} & \text { CLOUD COVER } \\ & \text { (loths of sky } \\ & \text { covered) } \\ & \hline \end{aligned}$	$\begin{gathered} \text { TEMPERATURE } \\ \left({ }^{\circ} \mathrm{F}\right) \end{gathered}$		R\#LATIVE HUMIDITY   (\%)
		Ground	0.5 Meter	
North Position				
Z -48	-*	87.0	70.0	29
2	-	90.1	70.0	35
$2+10$	-	93.0	70.1	36
Z +20	-	92.9	70.3	30
Z +30	-	92.9	72.1	29
Average		91.2	70.5	31.8
South Position				
$2-28$	3	73.7	70.8	30
Z +2	2	71.5	69.6	30
Z +12	2	71.6	70.1	31
$2+22$	2	71.1	70.4	29
Z +32	2	70.9	70.6	30
Average		71.8	70.3	30

*No data.

TABLE 15: Ultraviolet Radiation Data, Trial C-2, Bio 531 (UNCLASSIFIFD)

TIME   INTERVAL   (MST)	TOTAL UITRAVIOLFT ENERGY FROM 2000 to 3675 A   (Microwatts per second per cm $)$
1430 to 1445	207,025
1445 to 1450	63,700
1450 to 1500	117,600
1500 to 1505	56,350
1505 to 1510	52,675
1510 to 1515	49,000
1515 to 1520	45,325
I520 to 1525	44,100
1525 to 1530	40,425
Average	75,133

TABLE 16: Wind Direction and Speed Data for Trial C-3, Bio 531 (UNGIASSIFIED)

TIME INTERVAL (Minutes)	EAST POSITION, 2.0 METERS				WHST POSITION, 2.0 METERS			
	$\begin{gathered} \text { Direction } \\ \left({ }^{\circ}\right) \end{gathered}$		$\begin{aligned} & \text { Speed } \\ & \text { (mph) } \end{aligned}$		$\begin{gathered} \text { Direction } \\ \left({ }^{\circ}\right) \end{gathered}$		$\begin{aligned} & \text { Speod } \\ & \text { (mph) } \end{aligned}$	
	avg	range	avg	range	avg	range	avg	range
Z-5 to Z	261	198-319	4.0	0.9-7.0	275	191-012	2.4	<0.5-5.1
Z to $\mathrm{Z}+5$	279	230-332	5.0	2.2-8.7	268	231-332	4.3	0.7-6.5
$Z+5$ to $\mathrm{Z}+10$	270	215-314	5.1	2.5-7.7	268	216-324	3.1	<0.5-5.6
$\mathrm{Z}+10$ to $\mathrm{Z}+15$	282	189-327	2.6	$<0.5-4.9$	293	212-331	2.9	0.5-7.9
$\mathrm{Z}+15$ to $\mathrm{Z}+20$	279	200-324	4.2	1.4-7.2	269	230-334	3.6	$<0.5-7.2$
$\mathrm{Z}+20$ to $\mathrm{Z}+25$	281	204-313	5.2	2.3-8.1	282	235-306	2.5	0.6-5.6
$\mathrm{Z}+25$ to $\mathrm{Z}+30$	245	191-297	4.1	2.3-7.7	289	250-324	3.5	1.1-5.9
$\mathrm{Z}+30$ to $\mathrm{Z}+35$	282	252-314	4.9	1.8-7.7	269	226-340	4.6	c0.5-6.4
Average	272		4.4		276		3.4	

This information was taken on 29 September 1960 at the indicated positions. Function time (Z) was 1045 MST.

TABLE 17: Cloud Cover, Temperature, and Relative Humidity Data for Trial $\mathrm{C}-3$, Bio 531 (UNCLASSIFIED)

*No data.

TABLE 18: Ultraviolet Radiation Data, Trial C-3, Bio 531 (UNCLASSIFIED)

TIME   INTERVAL   (MST)	TOTAL ULTRAVIOLET ENERGY FROM 2000 to $3675 ~$   (Microwatt per second per cm<super>2)
1040 to 1050	73,500
1050 to 1055	
1055 to 1100	26,950
1100 to 1105	34,300
1105 to 1110	34,300
1110 to 1115	20,825
1115 to 1120	26,950
	24,500
Average	34,475

TABLE 19: Wind Direction and Spe日d Data for Trial C-5, Bio 531 (UNGLASSIFIED)

TIME   INTERVAL   (Minutes)	EAST POSITION, 2.0 METERS				WEST POSITION, 2.0 METERS			
	$\begin{gathered} \text { Direction } \\ \left.{ }^{\circ}\right) \end{gathered}$		$\begin{aligned} & \text { Speed } \\ & \text { (mph) } \end{aligned}$		Direction$\left({ }^{\circ}\right)$		$\begin{aligned} & \text { Speed } \\ & \text { (mph) } \end{aligned}$	
	avg	range	avg	range	Qv8	range	avg	range
Z-5 to 2	327	295-012	5.6	3.0-8.7	INOPERATIVE*		INOPERATIVE	
$Z$ to $Z+5$	325	277-012	3.9	1.0-7.0	INOPERATIVE		INOPERATIVE	
$Z+5$ to $Z+10$	301	277-352	4.6	1.3-8.4	INOPER'ATIVE		INOPERATIVE	
$\mathrm{Z}+10$ to $\mathrm{Z}+15$	307	261-354	4.2	0.7-7.3	INOPERATIVE		INOPERATIVE	
$\mathrm{Z}+15$ to $\mathrm{Z}+20$	288	255-319	5.2	2.1-7.9	INOPERATIVE		INOPERATIVE	
$\mathrm{Z}+20$ to $\mathrm{Z}+25$	297	275-341	4.5	1.8-7.2	INOPERATIVE		INOPERATIVE	
$\mathrm{Z}+25$ to $\mathrm{Z}+30$	274	216-317	3.1	0.5-5.7	INOPERATIVE		INOPERATIVE	
$\mathrm{Z}+30$ to $\mathrm{Z}+35$	277	215-347	2.3	0.9-4.7	INOPERATIVE		INOPERATIVE	
Average	300		4.2					

*West position inoperative in Trial C-5.
This information was taken on 17 October 1960 at the indicated position. Function time (Z) was 1350 MST .

TABIE 20：Cloud Cover，Temperature，and Relative Humidity Data for Trial C－5，Bio 531 （UNCLASSIFIED）

TIME	CLOUD COVER（loths of sky coverod）	$\begin{gathered} \text { TEMPERATURE } \\ \left({ }^{\circ} \mathrm{F}\right) \end{gathered}$		R巴LATIVE HUMIDITY   （\％）
		Ground	0.5 Meter	
East				
Position				
Z－10	9	－＊	63.8	26
2	9	－	64.3	24
Z＋10	9	－	64.9	23
Z＋20	9	－	65.0	22
$2+30$	9	－	65.7	22
Average			64.7	23

＂No data．

TABLH 21：Ultraviolet Radiation Data，Trial C－5，Bio 531 （UNCLASSIFIED）

TIME   INTERVAL   （MST）	TOTAL ULTRAVIOLAT ENERGY FROM 2000 to 3675 A   （Microwatts per second per cm $)$
1345 to 1350	24,500
1350 to 1355	23,275
1355 to 1400	22,050
1400 to 1405	22,050
1405 to 1410	17,150
1410 to 1415	18,375
1415 to 1420	18,375
l420 to 1425	19,600
	20,672

TABIH 22: Wind Direction and Speed Data for Trial C-6, Bio 531 (UNGLASSIFIED)

TIME   INTERVAL   (Minutes)	NORTH POSITION, 2.0 M				SOUTH POSITION, 2.0 METERS			
	$\begin{gathered} \text { Direotion } \\ \left({ }^{\circ}\right) \end{gathered}$		$\begin{aligned} & \text { Speed } \\ & \text { (mph) } \end{aligned}$		$\begin{gathered} \text { Direction } \\ \left({ }^{\circ}\right) \end{gathered}$		Speed (mph)	
	avg	range	avg	range	avg	range	avg	range
Z-5 to Z	315	263-014	3.6	1.5-6.5	291	263-317	3.8	1.3-6.5
2 to $2+5$	340	310-013	3.7	0.7-6.9	289	267-333	2.4	<0.5-5.4
$2+5$ to $Z+10$	315	263-006	4.0	1.5-8.0	346	253-036	1.1	<0.5-2.4
$2+10$ to $\mathrm{Z}+15$	294	270-341	4.4	2.3-6.5	342	302-003	1.2	<0.5-2.9
$\mathrm{Z}+15$ to $\mathrm{Z}+20$	311	264-342	3.9	1.4-6.1	349	309-018	3.3	0.7-4.9
$\mathrm{Z}+20$ to $\mathrm{Z}+25$	322	290-068	3.0	<0.5-6.1	351	342-360	3.4	2.1-5.3
$\mathrm{Z}+25$ to $\mathrm{Z}+30$	357	270-065	1.7	<0.5-3.3	341	333-351	3.3	0.9-5.5
$2+30$ to $2+35$	293	254-351	1.6	$<0.5-3.7$	311	264-337	2.6	<0.5-4.9
Average	318		3.2		328		2.6	

This information was taken on 20 October 1960 at the indicated positions. Function time (Z) was 1514 MST.

TABLE 23: Cloud Cover, Temperature, and Relative Humidity Data for Trial C-6, Bio 531 (UNGLASSIFIED)

TIME	CLOUD COVER   (loths of sky coverod)	$\begin{gathered} \text { TEMPERATURE } \\ \left({ }^{\circ} \mathrm{F}\right) \\ \hline \end{gathered}$		RBLATIVE HUMIDITY   (\%)
		Ground	0.5 Moter	
North Position				
Z -4	1	65.3	68.2	34
Z +6	1	65.0	67.0	34
Z +16	1	66.0	65.1	39
Z +26	1	64.1	65.0	37
$z+36$	1	63.8	67.0	31
Average		64.8	66.5	35
South				
Position				
Z -4	0	76.1	73.5	19
Z +6	0	68.2	75.0	17
Z +16	0	67.5	76.5	17
Z +26	0	66.9	74.6	17
Z +46	0	66.0	72.1	19
Average		68.9	74.3	18

TABI円 24: Ultraviolet Radiation Data, Trial G-6, Bio 531 (UNCIASSIFIED)

TIME INTERVAL (MST)	TOTAL UITRAVIOLITT ENERGY FROM 2000 to 3675 A   (Microwatts per second per $\mathrm{cm}^{2}$ )
1515 to 1520	14,700
1520 to 1525	15,925
1525 to 1530	11,025
1530 to 1535	9,800
1535 to 1540	8,575
1540 to 1545	7,350
1545 to 1550	7,350
Average	10,675

TABLE 25: Wind Direction and Speed Data for Trial D-I, Bio 531 (UNCLASSIFIED)

TIME INTERVAL (Minutes)	NORTH POSITION, 2.0 MHTERS				SOUTH POSITION, 2.0 METERS			
	$\begin{gathered} \text { Direction } \\ \left({ }^{\circ}\right) \end{gathered}$		$\begin{aligned} & \text { Speed } \\ & \text { (mph) } \end{aligned}$		$\begin{gathered} \text { Direction } \\ \left({ }^{\circ}\right) \end{gathered}$		$\begin{aligned} & \text { Speed } \\ & (\mathrm{mph}) \end{aligned}$	
	avg	range	avg	range	avg	range	avg	range
Z-5 to Z	246	243-248	4.8	0.7-9.8	229	130-279	5.6	co.5-8.5
$Z$ to $Z+5$	244	194-261	4.7	1.4-8.7	229	188-269	6.4	2.3-9.0
$\mathrm{Z}+5$ to $\mathrm{Z}+10$	221	198-262	7.5	2.0-10.0	252	174-297	6.0	2.5-10.9
$\mathrm{Z}+10$ to $\mathrm{Z}+15$	221	183-256	5.2	2.2-9.2	268	224-351	6.2	1.8-10.6
$\mathrm{Z}+15$ to $\mathrm{Z}+20$	239	214-265	6.9	1.8-8.9	252	203-309	5.6	2.6-10.0
$\mathrm{Z}+20$ to $\mathrm{Z}+25$	246	219-270	5.4	0.6-7.3	254	225-318	6.2	$3.9-10.0$
$\mathrm{Z}+25$ to $\mathrm{Z}+30$	239	189-295	5.3	<0.5-8.6	270	249-303	9.8	5.0-12.8
$\mathrm{Z}+30$ to $\mathrm{Z}+35$	268	238-294	6.6	3.9 - 9.9	259	230-310	6.2	2.2-8.6
$\mathrm{Z}+35$ to $\mathrm{Z}+40$	-	-	-	-	280	240-332	8.0	2.2-11.3
Average	240		5.8		255		6.7	

TABLE 26: Cloud Cover, Temperature, and Relative Humidity Data for Trial D-1, Bio 531 (UNCLASSIFIED)

TIINE	CLOUD COVER (10ths of sky ooverod)	$\underset{\substack{\text { TEMPERATURE } \\\left({ }^{\circ} \mathrm{F}\right)}}{\text { O }}$		REIATIVE HUMIDITY (\%)
		Ground	0.5 Mater	
South				
Position				
Z-5	0	92.2	74.0	32
$2+5$	0	90.9	74.8	30
Z+15	0	91.4	75.2	30
Z+25	0	91.3	75.5	31
$2+35$	0	93.8	77.0	26
Average		91.9	75.3	30

TABLI 27: Ultraviolet Radiation Data, Trial D-1, Bio 531 (UNGLASSIFIED)

TIME INTERVAL (MST)	TOTAL ULTRAVIOIET ENERGY FROM 2000 to 3675 A (Microwatts per second per $\mathrm{cm}^{2}$ )
1100 to 1105	67,375
1105 to 1110	57,575
1110 to 1115	50,225
1115 to lizo	60,025
1120 to 1125	67,375
1125 to 1130	67,375
1130 to 1135	66,150
Average	62,300

TABIE 28: Wind Direction and Speed Data for Trial D-2, Bio 531 (UNGLASSIFIED)

TINE INTERVAL (Minutes)	NORTH POSITION, 2.0 METERS				SOUTH POSITION, 2.0 METERS			
	$\begin{gathered} \text { Direction } \\ \left({ }^{\circ}\right) \end{gathered}$		Speod (mph)		$\begin{gathered} \text { Direction } \\ \left({ }^{\circ}\right) \end{gathered}$		$\begin{aligned} & \text { Speed } \\ & (\mathrm{mph}) \end{aligned}$	
	avg	range	evg	range	avg	range	avg	range
Z-5 to Z	315	286-037	2.5	1.4-3.7	340	264-036	2.5	<0.5-5.5
Z to Z+5	295	288-351	1.8	co.5-3.4	330	288-360	4.0	1.0-7.2
$\mathrm{Z}+5$ to $\mathrm{Z}+10$	286	209-344	2.8	0.5-5.3	284	250-340	4.8	1.8-7.4
$\mathrm{Z}+10$ to $\mathrm{Z}+15$	265	214-312	1.9	<0.5-4.9	303	250-352	3.7	c0.5-5.7
$\mathrm{Z}+15$ to $\mathrm{Z}+20$	252	141-313	1.6	60.5-3.4	337	306-040	3.6	1.0-5.8
$\mathrm{Z}+20$ to $\mathrm{Z}+25$	249	219-288	1.8	co.5-3.6	294	246-342	3.9	1.1 - 5.1
$\mathrm{Z}+25$ to $\mathrm{Z}+30$	248	189-063	3.4	1.2-5.4	328	283-009	4.8	2.1-10.4
$\mathrm{Z}+30$ to $\mathrm{Z}+35$	285	063-023	6.0	3.8-8.0	349	245-030	6.1	$3.3-10.2$
$\mathrm{Z}+35$ to $\mathrm{Z}+40$	312	275-360	5.9	3.3-8.9	252	216-282	INOP	TVE
Average	279		3.1		313		4.2	

This information was taken on 28 September 1960 at the indicated positions. Function time (Z) was 1005 MST .

TABIE 29: Cloud Cover, Temperature, and Relative Humidity Data for Trial D-2, Bio 531 (UNCLASSIFIED)

TIM	CLOUD COVER (10ths of sky oovored)	$\begin{gathered} \text { TEMPERATURE } \\ \left({ }^{\circ} \mathrm{F}\right) \end{gathered}$		RgIATIVG HUMIDITY   (\%)
		Ground	0.5 Meter	
North Position				
Z-5	-*	-	75.3	17
Z+5	-	-	75.2	16
Z +15	-	-	75.9	16
Z+25	-	-	77.6	15
Average			76.0	16
South Position				
Z-5	-	71.8	75.9	16
2+5	-	73.1	76.7	17
Z+15	-	74.1	76.5	17
Z+25	-	74.5	78.6	17
$\mathrm{Z}+35$	-	76.0	80.1	10
Average		73.9	77.6	15

No data.

TABLE 30: Ultraviolet Radiation Data, Trial D-2, Bio 531 (UNCLASSIFIED)

TIMA INTERVAL (MST)	TOTAL ULTRAVIOIET ENERGY FROM 2000 to 3675 A (Miorowatts per second per om²)
0954 to 0955	7,350
0955 to 1000	42,875
1000 to 1005	55,125
1005 to 1010	30,625
1010 to 1015	58,800
1015 to 1020	61,250
1020 to 1025	63,700
1025 to 1030	63,700
1030 to 1035	71,050
1035 to 1040.	68,600
Average	52,308

TABLE 31: Wind Direation and Speed Data for Trial D-3, Bio 531 (UNCLASSIFIED)

TIME INITERVAL (Minutes)	NORTH POSITION, 2.0 METERS				SOUTH POSITION, 2.0 METERS			
	$\begin{gathered} \text { Direction } \\ \left({ }^{\circ}\right) \end{gathered}$		$\begin{aligned} & \text { Speed } \\ & \text { (mph) } \end{aligned}$		$\begin{gathered} \text { Direction } \\ \left({ }^{\circ}\right) \end{gathered}$		$\begin{aligned} & \text { Spe日d } \\ & (\mathrm{mph}) \end{aligned}$	
	avg	range	avg	range	avg	range	avg	range
Z-5 to Z	256	246-270	4.9	2.3-7.4	243	148-324	3.5	<0.5-4.8
Z to $\mathrm{Z}+5$	310	236-360	1.2	<0.5-3.3	282	234-324	4.1	$<0.5-7.5$
$Z+5$ to $Z+10$	303	265-348	3.5	0.6-7.7	289	217-333	4.5	$<0.5-6.2$
$\mathrm{Z}+10$ to $\mathrm{Z}+15$	298	269-348	3.1	0.8-5.6	288	249-320	5.4	3.0-7.3
$\mathrm{Z}+15$ to $\mathrm{Z}+20$	316	271-349	3.1	0.9-5.0	300	273-325	5.5	3.2-7.8
$\mathrm{Z}+20$ to $\mathrm{Z}+25$	259	252-271	4.0	2.4-5.9	325	301-351	5.0	1.5-8.6
$\mathrm{Z}+25$ to $\mathrm{Z}+30$	252	212-288	2.7	0.7-4.7	337	292-027	4.7	1.9-7.0
$\mathrm{Z}+30$ to $\mathrm{Z}+35$	315	274-351	3.0	<0.5-6.5	314	270-012	5.2	2.2-7.3
Average	289		3.2		297		4.7	

This information was taken on 19 October 1960 at the indicated positions. Function time (Z) was 1248 MST .

TABLE 32: Cloud Cover, Temperature, and Relative Humidity Data for Trial D-3, Bio 531 (UNCLASSIFIED)

TIME	CLOUD COVER(loths of sky covered)	$\begin{aligned} & \text { TEMPERATURE } \\ & \left({ }^{\circ} \mathrm{F}\right) \end{aligned}$		RELATIVE HUMIDITY   (\%)
		Ground	0.5 Meter	
North Position				
Z-10	0	58.6	64.7	40
Z	0	60.0	65.0	40
Z +10	0	60.9	M*	M
Z+20	0	M	67.0	34
Z+30	0	M	66.1	35
Z +40	0	M	66.9	38
Average		59.8	65.9	37
South Position				
Z-10	0	0	65.0	32
Z	0	0	65.0	32
Z+10	0	0	65.2	31
Z+20	0	0	64.8	31
Z +30	0	0	65.4	31
Z+40	1	0	66.5	29
Average			65.3	31

*Missing.

TABLE 33: Ultraviolet Radiation Data, Trial D-3, Bio 531 (UNCLASSIFIED)

$\qquad$	TOTAL ULTRAVIOIRT ENERGY FROM 2000 to 3675 \& (Miorowatts per second per $\mathrm{cm}^{2}$ )
1240 to 1245	51,450
1245 to 1250	60,025
1250 to 1255	60,025
1255 to 1300	63,700
1300 to 1305	66,150
1305 to 1310	62,475
1310 to 1315	62,475
1315 to 1320	64,925
1320 to 1325	60,025
1325 to 1330	52,675
Average	60,392

TABLE 34: Wind Direction and Speed Data for Trial E-2, Bio 531 (UNGLASSIFIED)

TIME   INTERVVAL   (Minutes)	NORTH POSITION, 2,0 METERS				SOUTH POSTTION, 20.0 METEAS			
	$\begin{gathered} \text { Direction } \\ \left({ }^{\circ}\right) \end{gathered}$		$\begin{aligned} & \text { Speod } \\ & (\mathrm{mph}) \end{aligned}$		$\begin{gathered} \text { Direction } \\ \left({ }^{\circ}\right) \end{gathered}$		Speed (mph)	
	avg	range	avg	range	avg	range	avg	range
Z-5 to Z	INO	IVE	3.5	$<0.5-5.7$	INOP	IVE	3.9	1.7-7.6
Z to $\mathrm{Z}+5$	194	150-268	4.0	1.5-7.8	228	207-250	2.8	$<0.5-4.9$
$\mathrm{Z}+5$ to $\mathrm{Z}+10$	190	108-275	2.3	$<0.5-6.6$	221	184-284	1.9	<0.5-4.2
$\mathrm{Z}+10$ to $\mathrm{Z}+15$	171	119-222	1.8	<0.5-4.1	252	216-300	1.2	$<0.5-2.9$
$\mathrm{Z}+15$ to $\mathrm{Z}+20$	135	096-169	2.7	1.1-4.1	225	147-288	2.6	1.5-3.7
$\mathrm{Z}+20$ to $\mathrm{Z}+25$	125	090-164	1.8	<0.5-3.0	234	153-290	3.2	1.4-4.7
$\mathrm{Z}+25$ to $\mathrm{Z}+30$	147	115-173	1.0	$<0.5-2.0$	213	180-277	3.4	1.2-4.8
$\mathrm{Z}+30$ to $\mathrm{Z}+35$	185	169-192	3.2	1.1-4.2	210	183-224	4.6	3.5-5.3
$\mathrm{Z}+35$ to $\mathrm{Z}+40$	126	092-175	2.1	$<0.5-3.9$	204	177-230	2.5	1.1-3.7
Z+40 to $\mathrm{Z}+45$	146	048-190	1.7	$<0.5-4.0$	210	189-248	5.3	$4.3-6.3$
$\mathrm{Z}+45$ to $\mathrm{Z}+50$	099	009-176	1.6	$<0.5-3.3$	219	198-237	3.7	2.2-5.2
$\mathrm{Z}+50$ to $\mathrm{Z}+55$	105	070-128	1.9	<0.5-4.0	214	203-235	3.7	1.2-5.1
$\mathrm{Z}+55$ to $\mathrm{Z}+60$	138	061-177	2.7	1.7-3.7	201	174-225	3.4	$1.8-5.3$
$\mathrm{Z}+60$ to $\mathrm{Z}+65$	095	063-123	3.7	2.3-6.4	192	128-219	3.1	<0.5-6.9
$\mathrm{Z}+65$ to $\mathrm{Z}+70$	132	106-160	3.3	1.8-4.4	201	183-219	4.5	1.6-5.8
$\mathrm{Z}+70$ to $\mathrm{Z}+75$	153	132-171	3.3	1.8-5.3	193	164-225	2.4	$<0.5-3.1$
$\mathrm{Z}+75$ to $\mathrm{Z}+80$	146	VAILABLE	3.1	$<0.5-5.2$	202	162-218	4.0	1.3-5.5
$\mathrm{Z}+80$ to $\mathrm{Z}+85$.	183	133-240	1.2	$<0.5-2.8$	216	207-235	3.7	2.7-4.8
Average	145		2.5		214		3.3	

This information was taken on 3 October 1960 at the indicated positions. Function time (Z) was 1725 MST.

TABLE 35: Wind Direction and Speed Data for Trial E-2, Bio 531, Second Sampling Period (UNCIASSIFIED)

TIME INTERVAL (Minutes)	NORTH POSITION, 2.0 METERS				SOUTH POSITION, 2.0 WhTERS		
	Diroction $\left({ }^{\circ}\right)$		$\begin{aligned} & \text { Speed } \\ & (\mathrm{mph}) \end{aligned}$		$\begin{gathered} \text { Dirgction } \\ \left({ }^{\circ}\right) \end{gathered}$	$\begin{aligned} & \text { Speed } \\ & (\mathrm{mph}) \end{aligned}$	
	avg	range	avg	range	avg ${ }^{\text {a }}$ - range	avg	range
			2.7	<0.5-4.4	284 219-353	1.2	k0.5-2.8
$\mathrm{Z}+785-790$	120	102-198	2.7	1.5-4.0	210 192-225	1.1	k0.5-4.2
790-795	177	129-203	2.2	1.5-4.0 4.6	219 209-236	1.7	<0.5-4.0
795-800	180	165-200	3.1 3.2	$2.0-4.6$ $-0.5-5.3$	213 191-240	3.5	1.2-5.0
800-805	186	171-204	3.2 2.2	<0.5-5.3	182 109-255	4.1	1.3-6.5
805-810	245	201-304	2.2 1.3	$<0.5-4.8$	156 050-203	3.4	<0.5-5.5
810-815	285	246-319			141 054-237	1.5	< $0.5-3.6$
815-820	131	039-278	INOPERATITIVE		255 177-096	2.3	<0.5-5.1
820-825	196	113-230	INOPERATIVE		333 243-092	1.9	20.5-3.9
825-830	221	105-320			324 261-111	1.6	-0.5-3.5
830-835	130	096-189	INOPERATIVE		275 $231-312$	1.0	20.5-3.7
835-840	186	179-192	INOPERATIVE		210 184-240	1.1	40.5-2.4
840-845	219	192-243	INOPERATIVE		198 184-234	1.4	<0.5-3.4
845-850	157	044-252	INOPERATIVE		216 211-234	3.6	1.9-5.3
850-855	079	038-119	INOPERATIVE		216 211-234   210 $199-219$	3.2	1.4-4.9
855-860	048	002-140	INOPERATIVE		210 $199-349$	3.9	2.7-5.5
860-865	342	255-126	INOPERATIVE		263 096-308	3.9	2.9-5.4
865-870	084	360-153	INOP	TIVE	292 250-340	1.4	<0.5-4.4
870-875	116	005-190	INOPERATIVE		INOPERATIVE	0.7	$<0.5-2.0$
875-880	148	085-200	3.2	$1.5-4.1$ $<0.5-1.4$	INOPERATIVE	0.8	<0.5-1.9
880-885	153	070-357	0.7 1.5	<0.5-3.0	INOPERATIVE	1.4	<0.5-2.8
885-890	036	324-090	1.5	$<0.5-2.3$	INOPERATIVE	1.9	$<0.5-4.1$
890-895	060	000-127	1.0	<0.5-3.2	INOPERATIVE	0.9	$<0.5-2.9$
895-900	062	022-099 320-093	1.4 1.3	$<0.5-2.6$	INOPER'ATIVE	1.1	$<0.5-2.4$
$900-905$ $905-910$	042 103	320-093	1.3 1.4	<0.5-2.1	INOPERATIVE	0.9	$<0.5-3.5$

(Continued)

This information was taken on 4 October 1960 at the indicated positions. Function time (Z)
was 2725 MST .

TABLE 35: Wind Direction and Speed Date for Trial E-2, Bio 531, Second Sampling Period (Concluded)

TIME INTERVAL (Minutes)	NORTH POSITION, 2.0 MEITERS				SOUTH POSITION, 2.0 METERS			
	Direction ( ${ }^{\circ}$ )		$\begin{aligned} & \text { Speed } \\ & \text { (mph) } \end{aligned}$		$\begin{gathered} \text { Direction } \\ \left({ }^{\circ}\right) \end{gathered}$		$\begin{aligned} & \text { Spoed } \\ & \text { (mph) } \end{aligned}$	
	avg	range	av8	range	avg	range	avg	range
910-915	120	004-275	0.7	<0.5-1.7	INOP	TIVE	3.0	1.4-4.7
915-920	113	036-198	1.5	<0.5-3.2	INOP	TIVE	2.9	2.0-4.4
920-925	166	016-221	2.2	<0.5-4.2	076	020-107	2.0	40.5-4.3
925-930	122	056-180	1.6	co.5-2.9	059	225-135	1.6	$<0.5-3.8$
930-935	102	053-175	1.0	<0.5-2.9	133	072-173	1.0	$<0.5-2.1$
935-940	096	053-175	1.2	$<0.5-2.2$	048	025-068	1.3	<0.5-3.2
940-945	093	044-155	1.0	<0.5-2.8	069	246-102	2.3	0.9-3.5
945-950	099	057-145	2.0	-0.5-4.3	045	244-105	3.7	1.6-5.1
950-955	121	067-176	1.8	$<0.5-3.6$	068	UNAVAILABLE	2.8	$<0.5-5.7$
955-960	131	079-171	3.2	0.6-5.5	054	228-117	2.4	0.8-4.0
960-965	122	078-185	3.1	$<0.5-4.6$	063	291-090	1.4	$<0.5-2.8$
965-970	081	020-160	3.3	1.2-5.6	070	026-104	2.4	0.6-3.7
970-975	027	230-103	3.1	1.1-6.4	081	276-157	2.6	0.6-4.0
975-980	045	216-135	4.6	2.3-6.8	135	UNAVAILABLE	1.4	$<0.5-5.2$
980-985	030	000-081	4.3	1.6-6.8	171	120-250	2.2	$<0.5-6.2$
985-990	306	UNAVAILABLE	4.8	2.3-7.5	180	125-254	4.6	1.0-7.8
990-995	324	UNAVAILABIE	3.8	1.6-5.7	176	138-214	7.2	2.0-12.6
995-1000	033	UNAVAILABLE	5.4	3.3-7.6	183	146-210	6.4	3.4-12.3
Average	137		2.4		172		2.3	

TABLE 36: Cloud Cover, Temperature, and Relative Humidity Data for Trial E-2, Bio 531 (UNCCLASSIFIRD)

TIME	CLOUD COVER (loths of sky ooyered)	TEMPERATURE ( ${ }^{\circ} \mathrm{F}$ )		RELATIVE HUMIDITY   (\%)		
		Ground	0.5 Meter			
North Position						
Z-10	3	-*	73.4	9		
Z+5	3	-	72.7	10		
Z+15	3	-	70.2	12		
2+25	3	-	69.9	14		
Z+35	3	-	67.1	19		
Z+45	3	-	67.0	18		
Z+55	3	-	67.0	18		
Z+65	3	-	66.7	18		
Z +75	3	-	66.4	17		
Z +85	3	-	66.2	18		
Z+95	3	-	66.1	17		
Average			68.4	15		
South						
Position						
$z+5$	1	-	75.6	13		
Z +15	1	-	74.3	12		
Z +25	1	-	72.3	14		
Z+35	1	-	69.9	14		
Z+45	1	-	69.8	14		
2+55	1	-	68.9	13		
Z +65	1	-	72.1	14		
Z +75	1	-	67.0	19		
Average			71.2	14		

*Unavailable
This information was taken on 3 October 1960 at the indicated
positions. Function time ( Z ) was 1725 MST .

TABL® 37: Cloud Cover, Temperature, and Relative Humidity Data for Trial E-2, Bio 531, Second Sampling Period (UNCLASSIFIED)

TIM	CLOUD COVER(IOths of skycovered)	$\begin{aligned} & \text { TEMPERATURH } \\ & \left({ }^{\circ} \mathrm{F}\right) \end{aligned}$		RELATIVE HUMIDITY   (\%)
		Ground	0.5 Meter	
North				
Position				
Z +785	2	47.2	49.8	29
Z+795	2	47.6	49.5	30
Z+805	2	48.8	49.1	35
Z+815	2	48.1	52.0	34
Z+825	2	49.6	52.8	33
Z+835	2	51.2	53.5	32
Z+845	2	51.3	55.3	31
Z+855	2	50.5	58.0	30
$2+865$	2	50.9	57.9	31
2+875	2	52.7	58.8	30
Z+885	2	54.1	60.3	27
Z+895	1	54.2	60.4	28
Z+905	1	54.7	60.8	28
Z+955	1	59.5	71.6	23
Z +965	1	59.6	72.0	20
Z+975	1	59.7	71.8	20
Z+985	0	63.5	72.1	20
Z+995	0	66.5	74.9	19
Average		53.9	60.0	28
South				
Position				
Z+785	1	UNAVAILABLE	51.4	29
Z +795	1		50.9	29
Z+805	1		52.0	28
Z+815	1	1	53.0	27
2+825	1	1	57.2	25
Z+835	1		54.9	25
$\mathrm{Z}+845$	1		54.1	26
Z+855	7		52.8	25
Z+865	1		53.2	27
Z+875	1		54.3	30
Z+885	1		56.7	31
Z +895	1		60.0	29
Z+905	1		62.2	26
Z+915	1		62.5	25
Z+955	1		69.9	20
Z+965	1		71.0	21
Z+975	1	,	71.9	20
Z+985	1		72.3	20
2+995	1	UNAVAILABLE	72.0	20
Average			59.6	25

This information was taken on 4 October 1960 at the indicated positions. Function time (Z) was 1725 MST, 3 October 1960.

APPENDIX B

SAMPLING DATA
(CONFIDENIIAL)


Rolativo humidity: 206
Tomporeturo at 2 motors: $70.3^{\circ}$
tabie 2: Sampling fogulea of trial b-2. Bio 331 (CONfidsitial)

$\begin{aligned} & \text { SRLPLDMG } \\ & \text { UNTT } \end{aligned}$																													
		1	2	3	${ }^{4}$	5	${ }^{6}$	7	${ }^{8}$		${ }^{10} 1$	11	12	${ }^{13}$	${ }^{14}$	${ }^{15}$	${ }^{16}$	17	18	19	20	${ }^{21}$	22	23	24	25			
100-1 oot RedIus Individual Cirele																													
	0-3	19	3	35	35		733	20 35	${ }_{22}^{15}$	16																	34.20	${ }^{8.61}$	
	10-15	35	36	39	68	59	75	30	36	55	25																45.80	17.13	
	15-20	52	40	65	76	78	71	50	66	85	23																60.60	19.20	
	$20-25$	45	${ }_{4}^{46}$	${ }_{95} 6$	${ }_{87}^{97}$	90	(938	65	97	67 55	(21																68.30 54.80	25.94 80.90	
	25-30	52						4																			54.80		
	Totals	271	175	317	388	361	367	250	276	292	155																285.20	77.95	1000
150-foot Radius Individual Circle	0-5	0	0		13	4	5.	5	12	27																	7.93	6.72	
	5-10	0	1	${ }_{8}$	14	3	10	10	10	59	23	6	20	11	4	4											12.53	14.31	
	10-15	0	5	4	15	5	12	1	15	44	49	4	${ }^{8}$	7   5	6	4											11.93 12.47	14.74 17.65	
	15-20	0	3	$\stackrel{2}{2}$	12	3	${ }^{8}$	$\stackrel{2}{0}$	${ }^{9}$	47 39	\% 61	10	[ 17	6 5	${ }_{4}^{4}$	3 2 2											12.47	17.65 18.29	
	-20-25	$\bigcirc$	1	2	${ }_{9}^{10}$	${ }_{1} 1$	\%	${ }_{6} 6$	${ }^{10} 8$	39 64	688	10	5	${ }_{9}$	3	1											11.27	17.82	
	Totals	0	10	24	73	30	48	24	54	280	255	4	71	43	29	17											67.47	84.10	1000
250-Poot Radius Individual Girele	0-5	20		5		10		12	12			12			2	3	0		0	0	0	5	2		2		6.44	7.23	
	5-10	30	20	12	4	18		${ }^{27}$	17	14	5	8		$\bigcirc$	10	18	2	3	1	11	d	10	3	10	4		10.44	8.70	
	10-15	15	${ }^{8}$	23	${ }^{6}$	20		29	22 18	12	10	10	5	2	7	12	${ }^{6}$	2 0	${ }^{1}$	15	1	5	1	8	5	${ }_{28}^{10}$	10.88 10.4	8.78 9.46	
	15-20	25 10	12	10	${ }_{8} 10$	12		21 35	18	${ }^{16}$		0	3	3	8	13	15	1	6	4	-	4	2	6	6	24	9.80	10.13	
	-20-25	20	7	9	15	14	34	25	20	4	0	0	2	3	6	18	17	0	0	16	-	4	2	7	7	21	10.04	9.30	
	Totala	120	62	67	48	92	192	149	12	56	33	34	17	9	38	87	50	18	8	50	1	36	11	46	28	88	58.04	45.94	1000
100-foot Radtua Conoentrio Cirole	0-5	60			22	0	35	70	17	10																	29.80	23.39	
	5-10	40	50	30	18	0		90	32	5	${ }^{8}$																29.60 23.10	26.43 16.89	
	10-15																										23.10 26.00	16.89 17.56	
	15-20	20	80		20	$0$	$32$	$\left.\begin{aligned} & 54 \\ & 30 \\ & 30 \end{aligned} \right\rvert\,$	$40$	10 10	$\begin{array}{ll} 0 & 14 \\ 0 & 12 \end{array}$																23.20	13.93	
	20-25	20	40	20	21 3	$?$	${ }^{\circ}$	30 60	36 25	10 10	[12																24.20	17.43	
	25-30				33	0	${ }^{31}$																						
	Totala	180	275	141	124	0.	0. 187	3 m 4	195	55	58																155.90	104.32	
150-foot Gadiua Concontric Circle																											12.07	13.98	
	$0-5$ 5.10	$\frac{1}{2}$	1	$\begin{aligned} & 2 \\ & 3 \end{aligned}$	$\begin{aligned} & 22 \\ & 16 \end{aligned}$	25		50	21 25	12 10		${ }_{21}^{6}$				2 6											14.33	11.32	
	$5-10$ $10-15$	2	${ }_{9}^{6}$	5	18 18	33	${ }^{21} 8$	31	$1 \begin{aligned} & 23 \\ & 23\end{aligned}$	18	1	18	29	5	9	11											11.60	10.47	
	15-20	2	24	9	12	20	4	24	19	17	1	13	20	4 5	24	14.											13.80 13.67	8.23 9.82	
	20-25	2	34	7	30	21		15	16	18	1	12	[17														12.73	9.25	
	25-30	2	25	4	22	27	$7{ }^{3}$	20	20	20																			
	Totals	31	99	30	120	146	56	280	124	95	6	79	116	30	69	47											81.20	50.99	w/10*
250-foot fadiua Coneontrio Circle																									0		2.92	5.37	
	$0-5$ $5-10$	0 2	0	$\begin{aligned} & 0 \\ & z \end{aligned}$	$\begin{aligned} & 0 \\ & 6 \end{aligned}$	10		$1{ }^{8}$		20	13	28	11	2 2	0	0	0	0	0	0	0	,	2	,	5	${ }^{\circ}$	4.96	6.82 7.04	
	5010 $10-15$	1	2	5	8	23	${ }^{4} 9$	9	10	2 c	+ 19	15	14		${ }^{6}$		0	0	0	${ }_{13}{ }^{2}$	2	$\stackrel{2}{2}$	1	1	5	3	6.76 5.64	7.04 8.26	
	15-20	1	0	3	5	${ }_{28}^{8}$	8	${ }^{8}$	[ 6	${ }^{8}$	${ }^{8} 8$	$\left\|\begin{array}{l} 16 \\ 16 \end{array}\right\|$		$13$	$\left\|\begin{array}{r} 10 \\ 3 \end{array}\right\|$	$\frac{1}{2}$	$\begin{aligned} & 1 \\ & 1 \end{aligned}$	-	0		2	0	1	2	3	${ }^{6}$	5.20	5.89	
	-20-25	3	1	2 6	[ ${ }^{6} 4$	22 39	$2{ }^{2}$	[	3	11   6	61818	${ }^{11} 8$	8	${ }^{7} 18$	3	4	0	0	9	${ }_{9}$	3	1	1	0	6	17	7.16	8.36	
		13	2	18	39	109	29	48	31	79	9103	90	53	51	22	7	2	0	9	42	B	3	5	5	19	30	36.64	32.48	N/4

- Noot applice blo.

Rolativo humidity: $23 /$
Tonporaturo at 2 motors: $70 \%$
Avorego vind spood: 3 mph

$\underset{\text { SA:IPLITMG }}{\text { UMITT }}$																												$\begin{aligned} & \text { STAMDABD } \\ & \text { DEVIATION } \\ & \text { OFI } \\ & \left(\text { SII }^{2}\right) \end{aligned}$	NUBBEROFVBCTORSRELRASETP
		1	2	3	4	5	6	7	\%	9	10	12	12	13	14	15	${ }^{16}$	17	18	13	20	21	22	23	24	25			
100-foot Ralius Indivisual Circlo	0-5	1	5	0	4	0	4	1	1	-	2																1.80	1.87	
	5-10	3	2	5	5	3	6	2	4	1	4																3.50	2.58	
	10-15	3	1.	2	2	1	3	0	1	2	${ }_{5}$																1.80	1.03	
	10.20 $20-25$	2	0	2	2	0	4	${ }^{0}$	2	0	5																1.70 0.50	1.77 0.22	
	25-30	0	0	0	$\bigcirc$	0	3	1	1	0	0																0.50	0.97	
	Totels	$\geq 0$	9	9	23	4	22	5	9	3	14																9,80	5.59	250
150-Foot Racitus Irdivinual Circlo	0-5	0		0	0	0					3																		
	5-10	2	2	0	6	0	2	1.	3	0	4	0	1	0	0	-											0.20 1.40	0.77 1.80	
	10-15	2	0	0	3	0	2	0	2	0	1	0	0	0	0	0											0.60	0.99	
	- $\begin{aligned} & 15-20 \\ & 20-25\end{aligned}$	12	2	0	4	0	1	0	1	$\bigcirc$		1	0	0	1	0											0.73 0.40	2.10 0.74	
	25-30	1	1	0	0	0	1	0	1	0	0	0	0	1	2	0											0.47	0.64	
	Tatals	8	5	1	13	0	5	1	9	0	8	1	1	1	4	0											3.80	4.07	250
250-foot Radius Individual Circio	0-5	1		1	2	0	0	3	0	0	0	0	0	0	4										2	2	0.76	1.09	
	5.10	4	2	6	5	8	0	1	1	0	3	0	0	0	2	2	0	3	1	0	0	0	2	0	4	1	1.80	2.18	
	10-15	3		2	4		1		7	2			0		0										3	0	1.76	2.09	
	$15-20$ $20-25$	3 2 2	4	1	$\frac{1}{3}$	2	0	1	2	1	1	0	0	0	0	-	2	1	1	$\begin{aligned} & 0 \\ & 0 \\ & 0 \end{aligned}$	O	-	3 2	0	4	0	1.08 0.72	1.29 1.02	
	20-25 $25-30$	2 3	1	0	3	3	0	1	${ }_{2}^{2}$	0	1	0	0	0	0	2	1	0	0	0	-	$\bigcirc$	2	0	1	0	0.72 0.60	1.02 1.12	
	Totals	16	14	10	19	23	1	8	12	3	7	0	0	0	6	6	5	6	3	0	0	0	11	0	15	3	5.72	6.69	250
100-100t Radius Concontric circle	--5	18	2	6	9					6	0																		
	5-10	16	1	1	14	11	7	18	4	5	$\bigcirc$																7.70	5.25 6.63	
	10-15	17	1	2	7	10	4	11	6	6	0																6.40	5.19	
	1-20	14	-	-	6	${ }^{9}$	5 3	(1)	5 3																		4.80 2.40	4.44 3.96	
	25-30	7	0	$\stackrel{4}{0}$	2	5	3	1	1.	${ }^{2}$	0																2.20	2.35	
	Totale	78	4	23	39	49	27	47	21	25	0																30.30	23.60	750
150-foot Radius Conontric Circlo	0-5			0			3	8	10	3			0	3	0	4											3.13	3.70	
	5-10	3	1	0	4	3	1	4	1	2	3	3	2	4	0	5											2.40	1.55	
	10-15	2	0	0	1	2	1.	3	2	0	0	2	$\frac{1}{2}$	2	0	3											1.27 1.20	1.10 1.47	
	$15-20$ $20-25$	2 3		0	0	1	1	3	0	0	号	4	2	$\stackrel{\square}{\square}$	4	$\frac{1}{3}$											1.20 0.73	1.47 1.10	
	25-30	2	0	0	0	0	0	0	0	0	2	0	0	0	1	2											0.40	0.74	
	Totals	${ }^{13}$	2	0	8	7	6	18	13	5	15	10	6	3	7	18											9.13	5.37	N/4**
250-foot Radius Consantrie Circio	0-5	0	2																								0.40	0.64	
	5-10	2	3	2	0	0	1	1	2	1	0	2	1	2	2	3	0	0	0	1	0	1	3	2	4	2	1.32	1.18	
	10-15	0	3	-	0	2	3	0	1	0	0	5	1	1	0	2	0	1	1	0	0	2	2	0	1	1	1.04 0.92	1.27 1.35	
	15-20	0	4	0	$\bigcirc$	1	2	0	0	0	0	4	0	0	1	1	0	0	1	0	0	2	1	4	0	$\stackrel{2}{2}$	0.92 1.00	1.35 1.38	
	-20-25	0	5	1	0	0	2	2	0	0	0	3	1	0	2	2 1	0	0	0	0	${ }_{3}^{1}$	${ }_{0}^{1}$	${ }_{0}^{2}$		4	${ }_{3}^{2}$	0.56	1.16	
	Totals	2	21	2	0	3	7	2	5	1	0	14	3	3	7	9	0	1	2	1	-	7	9	9	10	11	5.32	5.11	N/4

- Not appliooble.
table 4: Sampling Rosulte of Trial C-1, Blo 531 (confidiantial)
Foletive humidity: 152
Temperature ot 2 metors: $86.1^{*}$ F
Averege Eind lpeed: 7.1 mph

SAMPLIM UNIT	DISTANCEFROLR\&LFASEPOINT(Ye	TYVIAIMTERYAL(Mnutes)																	TVATAGE NTMBIT OT BITES PSR HOST FOR INDICATED TINA InIENTAL ( $x$ )	$\begin{aligned} & \text { SINDDRD } \\ & \text { DEVIARION } \\ & \text { of } x \\ & \langle S x\rangle \end{aligned}$	$\begin{aligned} & \text { MJIBEA O } \\ & \text { VBCTORS } \\ & \text { RHEASDD } \end{aligned}$
			1	2	3	4	5	8	7	8	9	10	11	12	13	14	15	16			
4-4	20	0-5	0	2	1	0													0.75	0.96	
		5-10	0	4	1	1													1.50	1.73	
		10.15	3.	1	0	1													1.25	1.26	
		15-20	0	0	0	2													0.50	1.00	
		20.25	0	0	0	1													0,25	0.50	
		25-30	1	0	1	2													1.00	0.82	
		Totals	4	7	3	7													5.25	2.06	40
A-16	20	0-5	7	5	5	1	0	0	0	0	2	0	0	0	1	0	1	0	1.38	2.25	
		5-10	2	8	2	1	3	0	0	0	1	0	0	0	0	0	1	0	1.13	2.06	
		10-15	0	2	1	0	0	0	0	0	0	0	0	0	0	0	1	0	0.25	0.58	
		15-20	1	3	0	0	0	0	0	0	0	2	0	0	0	1	0	0	0.44	0.89	
		20-25	0	6	0	0	0	0	0	0	1	1	1	0	0	0	0	0	0.56	1.50	
		25-30	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0.06	0.25	
		Totals	10	25	8	2	3	0	0	0	4	3	1	0	1	1	3	0	3.81	6.36	160
B-4	20	0-5	3	5	2	2													3.00	1.41	
		5-10	6	6	3	1.													4.00	2.45	
		10.15	7	6	6	1													5.00	2.71	
		15-20	4	4	4	2													3.50	1.00	
		20-25	2	6	2	2													3.00	2.00	
		25-30	2	3	1	2													2.00	0,82	
		Totala	24	30	18	10													20.50	8.54	400
B-16	20	0-5	6	2	1	2	4	2	5	2	4	15	1	0	2	2	2	2	3.25	3.49	
		5-10	8	1	2	1	3	2	6	$a$	6	7	0	0	3	1	1	0	3.06	2.93	
		10-15	6	1.	1	1	2	3	4	5	3	4	1	7	4	1	0	0	2.69	2.15	
		15-20	2	5	2	2	1	0	7	4	1	5	2	6	2	1	2	0	2.63	2.13	
		20-25	2	2	0	3	0	0	5	3	4	1	0	4	1	0	2	0	1.69	1.70	
		25-30	1	0	0	0	1	0	7	4	2	3	1	5	0	0	0	0	1.50	2.16	
.		Totala	25	11	6	9	11	7	34	26	20	35	5	22	12	5	7	2	14,81	10.68	1600
C-4	20	O-5	0	0	1	0													0.25	0.50	
		5-10	0	0	0	0													0.00	0.00	
		10-15	0	0	1	0													0.25	0.50	
		15-20	0	0	1	0													0.25	0.50 0.00	
		20-25	0	0	0	0													0.00 0.00	0.00 0.00	
		25-30	0	0	0	0										.			0.00	0.00	
		Totals	0	0	3	0													0.75	1.50	40
C-16	20	0-5	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	$\bigcirc$	0.00	0.00	
		5-10	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0.00	0.00	
		10.15	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0.00 0.00	0.00 0.00	
		15-20	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0.00	0.00 0.00	
		20-25	0	0	0	0	0	0	0	0	0	0.		0	0	0	0	0	0.00 0.00	0.00 0.00	
		25-30	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0.00	$0 . \infty$	
		Totels	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0.00	0.00	160
D-4	20	0-5	25	19	12	1													14.25	10.31	
		5-10	23	15	9	2													12.25	8.92	
		10-15	21	7	5	1													8.50	8.70 4.08	
		15-20	9	2	1	0													3.00 1.25	1.89	
		20-25	4	0	0	1													0.25	0.50	
		25-30	1	0	0	0															
		Tatals	83	43	27	5													39,50	32.92	400
D. 26	20	0. 5	5	12	4	13	15	5	1	2	2	6	20	3	0	3	5	0	5.88	5.68	
		5-10	2	4	6	18	11	4	5	3	3	9	15	2	0	5	9	0	6.00	5.16	
		10-15	6	1	2	8	3	0	3	2	7	7	6	3	5	8	6	0	4.19	2.76 3.89	
		25.20	1	5	0	3	0	0	10	4	0	9	6	1	0	4	4	0	2.94 3.38	5.29	
		20-25	0	0	1	3	0	0	20	0	3	10	3	0	7	3	4	0	3.38 3.19	5.29 6.12	
		25-30	0	0	3	1	0	0	25	0	5	5	4	0	4	2	2	0	3.19	6.12	
		Totels	14	22	16	46	27	9	64	11	20	46	64	9	16	25	30	0	25,66	18.11	1600

[^2]nubbrizg diacran


SALPLIRRUNTT	$\begin{gathered} \text { DISTMCI } \\ \text { PROL } \\ \text { RGIRASE } \\ \text { POIMI } \\ \text { (Yoot) } \end{gathered}$	TINS   IMTERVAL (Minutes)			अ15	页	$\begin{aligned} & \mathrm{BIM} \\ & \mathrm{TOF} \end{aligned}$	$\begin{aligned} & \text { R } \\ & \mathrm{N}^{\prime} \end{aligned}$	$\begin{aligned} & \mathrm{ACA} \\ & \hline \mathrm{IC} \end{aligned}$	$\overline{3 T}$	Pas:	$\begin{aligned} & \text { POL } \\ & \text { TON } \end{aligned}$	$\begin{aligned} & \mathrm{FiD} \\ & \hline 101 \end{aligned}$	$\begin{aligned} & \text { TIIT } \\ & \hline R \end{aligned}$	$I N$	$\sqrt{2 k y}$			OF BITRS PER HOST	$\begin{aligned} & \text { STMDARD } \\ & \text { DIVIMTON } \end{aligned}$	NJWBER 05
			2	2	3	4	5	6	7	8	9	10	11	12	13	14	15	26	INTRRVAL (I)	(sx)	RELSASED
A-4	20	$0 \cdot 3$	0	0	0	0													0.00	0.00	
		5-10	0	1	1	0													0.50	0.58	
		10-15	0	0	2	0													0.50	1.00	
		15-20	0	0	0	0													0.00	0.00	
		20-25	0	1	0	0													0.25	0.50	
		25-30	0	0	0	0													0.00	0.00	
	20	Total:	0	2	3	0													1.26	1.50	40
a-16		0-5	0	1	0	0	1	0	0	0	0	1	0	0	1	0	0	0	0.25	0.45	
		5-10	0	1.	0	0	1	0	0	0	0	0	1	0	1	0	1	0	0.31	0.48	
		10-15	0	0	0	1	0	1	0	0	1	0.	1	0	1	0	0	0	0.31	0.48	
		15-20	0	1	1	3	0	0	0	0	0	0	0	0	2	0	1	0	0.50	0.89	
		20-25	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0.06 0.12	0.25 0.34	
		25-30	0	0	0	0	0	0	0	1	0	0	1	0	0	0	0	0	0.12	0.34	
8-4	20	Totala	0	3	1	4	2	1	0	2	1	1	3	0	5	0	4	0	1.58	1.66	160
		0-5	0	1	0	0													0.25	0.50	
		5-10	0	2	2	25													7.25	11.87	
		10-15	2	0	4	23													7.25	10.63	
		15-20	3	1	5	18													6.75 5.75	1.68 8.92	
		20-25	1	0	3	19													5.75 5.50	8.82 7.85	
		25-30	4	0	1	17													5.50	. 8	
B-16	20	Totsls	10	4	15	102													32.75	46.88	400
		0-5	4	0	0	0	7	3	3	1	2	0	0	1	5	1	3	0	1.88	2.13	
		5-10	3	0	0	0	4	1	1	0	6	0	1	1	3	0	0	0	1.25	1.81	
		10-15	5	0	0	0	1	2	1	1	${ }^{6}$	0	0	2	3	3	1	0	1.62	1.99 2.92	
		15-20	5	1	0	0	3	4	0	1	10	0	0	0	6	0	2	0	1.00 1.19	1.94	
		20-25	0	1	1	0	3	1	0	0	7	0	1	0	1	0	0	1	1.19 0.94	1.94	
		25-30	0	1	0	0	0	5	0	1	6	0	1	0	1	0	0	0	0.94	1.64	
C-4	100	Totals	28	3	1.	0	18	16	5	4	37	0	3	4	23	4	6	1	8.88	10.41	1600
		0. 5	0	0	0	0													0.00	0.00	
		5-10	0	0	0	0													0.00	0.00 0.00	
		10-15	0	0	0	0													0.00	0.00 0.50	
		15-20	0	2	0	0													1.00	0.82	
		20-25	2	1	3	0													1.00	1.41	
0-16		25-30	0	1	3	0															
	100	Totels	2	3	4	0													2.25	1.71	40
											0	0	0	0	0	0	0	0	0.44	0.81	
		$0-5$ $5-10$	0 1	3	1	0	0	0	2	0	0	0	0	0	0	0	0	0	0.38	0.88	
		10-15	2	2	2	0	2	0	2	0	0	0	0	0	0	0	0	0	0.58	0.89	
		15-20	0	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0.19	0.40	
		20-25	0	0	1.	0	0	0	0	0	0	0	0	0	0	0	0	0	0.08	0.00	
		25-30	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0.00		
D-4	100	Totals	2	9	5	1	3	0	5	1	0	0	0	0	0	0	0	0	1.62	2.63	260
																			5.50	3.87	
		0-5	9	7	6														5.50	2.89	
		5-10	5	8	9														4.50	1.29	
		10-15	6	5	4	3													4.25	2.87	
		15-20	2	5	8	2													5.50	1.73	
		20-25	5	6	7	3													4.00	0.82	
		25-30	3	4	5	4													20.05	10.72	400
D. 16	100	Totals	31	53	39	14													29.25	10.72	
													0	2	4	3	0	0	1.81	1.94	
		0-5	19	$\begin{aligned} & 3 \\ & 2 \end{aligned}$		$\begin{aligned} & 0 \\ & 0 \end{aligned}$	4	1	0	0	7	2	0	12	6	3	0	0	3.31	5.40	
		5-10	19 5	2	0	$\begin{aligned} & 0 \\ & 2 \end{aligned}$	1	$1$	0	0	2	0	0	4	1	2	0	0	1.19	1.51	
		10.15	5			1	6	0	1	1	0	2	0	4	5	2	0	2	2.12	2.42	
		15-20	17	2	0	2	6 2	16	2	1	8	5	1	8	${ }^{6}$	4	0	0	4.88	5.34	
		20-25 $25-30$	1 2	5	0	0	3	6	0	1	0	0	0	2	2	1	0	0	1.38	1.89	
		Totals	55	17	1	5	22	24	3	8	17	21	1	32	26	13	0	2	14.69	14.78	1600




Rolativa humidity: 23\%
Temperture at 2 motern: $64.7^{\circ} 9$
TABLA 7: Sampling Ranute of Trial C-5, Bio 532 (CONFIOMNTIAL)
4varege Fiad speed: 4.2 mph

NUBEMATO DIACRAM


Rolative humidity: 351
Teapporature at 2 matars: 2 : $66.5^{\circ} \mathrm{T}$
TABLE 8: Sumpling Rosulte of Trial C-6, Bio 531 (confidential) Averega Find apoed: 2.9 mph




$\begin{aligned} & \text { SITPGIN } \\ & \text { UNIT } \end{aligned}$	$\begin{aligned} & \text { IIII } \\ & \text { mirthyal } \\ & \text { (MInutas) } \end{aligned}$	$\qquad$											STAKMADDYIATIOor $x$$(3 x)$	Munder or VBCTORS RELEASED
		1	\%	है	4	5	6	7	8	T	10			
$\begin{aligned} & \text { Rov I, Column } I_{1} \\ & (31 t t i n g) \end{aligned}$	0-3	2	3	3	2	4	2	10	3	2	3	3,40	2.41	100
	5-20	1	2	0	0	1	1	3	1	1	0	1.00	1.94	
	10-15	1	0	0	1	0	0	1	1	0	2	0.50	0.70	
	15-20	0	2	0	0	0	0	4	0	1	0	0.70	1.34	
	20-25	1	1	0	0	0	0	2	1	0	0	0.50	0.70	
	25-30	0	0	1	0	0	0	0	1	0	2	0.30	0.48	
	Totals	5	8	6	3	5	3	20	7	4	6	6.50	5.09	
$\begin{aligned} & \text { Rov I, Colum 2, } \\ & \text { (haiking) } \end{aligned}$	0-5	2	2	1	2	1	2	0	0	1	0	1.10	0.87	160
	5-10	2	0	2	1	2	1	0	2	0	0	0.90	0.57	
	10-15	0	1	0	0	1	1	0	0	0	0	0.30	0.48	
	15-20	0	1	1	1	0	0	0	1	0	0	0.40	0.52	
	20-25	1	1	0	2	0	0	1	0	0	2	0.70	3.82	
	25-30	0	0	0	0	0	0	1	0	0	0	0.10	0.32	
	Totals	5	5	4	6	4	4	2	2	1	2	3.50	1.54	
Row $I_{1}$ Colum 3, (sitting-Helxing)	O. 5	2	0	2	5	2	3	0	0	2	1	1.70	1.57	100
	8-10	\%	0	0	3	1	1	1	0	1	0	1.00	2.15	
	10-15	2	0	1	2	0	0	0	0	0	1	0.80	0.84	
	15-20	3	2	0	0	0	0	0	0	0	0	0.50	2.08	
	20-25	3	0	0	0	0	0	0	0	0	0	0.30	0.85	
	25-30	2	0	0	0	0	0	0	0	0	0	0.20	0.63	
	Totels	15	2	3	10	3	4	1	0	3	2	4.30	4.54	
Rov II, Golumin 1, (sitting-hilking)	0.5	5	5	4	0	0	1	0	2	0	0	1.70	2.16	100
	5-10	1	2	2	4	0	0	1	0	1	0	1.10	1.28	
	10-15	2	4	1	3	0	2	2	0	2	0	1.40	1.07	
	25-20	2	1	0	0	0	0	0	0	0	0	0.30	0.87	
	20-25	3	1	0	0	0	0	0	0	3	0	0.70	1.25	
	25-30	0	0	0	0	0	0	0	0	0	0	0.00	0.00	
	Totsls	13	11	7	7	0	3	3	2	6	0	5.20	4.42	
$\begin{aligned} & \text { Row II, Column } 2, \\ & (\text { SItting }) \end{aligned}$	0-5	0	0	2	0	0	0	0	0	0	0	0.20	0.63	40
	(5-10	0	0	0	0	1	0	1	0	0	0	0.20	0.42	
	10-15	0	0	0	0	0	0	1	0	0	1	0.20	0.42	
	15-20	0	0	2	0	0	0	0	0	0	0	0.20	0.63	
	20-25	0	0	0	0	0	0	0	0	0	0	0.00	0.00	
	25-30	0	0	0	0	0	0	0	1	0	0	0.10	0.32	
	Totels	0	0	4	0	1	0	2	1	0	1	0.90	1.29	
$\begin{aligned} & \text { Fow II, Columan } 3 \text {, } \\ & (W \ln \text {, } \end{aligned}$	0-5	3		2	1	1	1	2	2	0	1.	1.70	1.16	160
	5-10	0	1	1	0	0	0	0	1	0	0	0.30	0.48	
	10-15	0	0	$\bigcirc$	0	0	0	0	0	0	0	0.00	0.00 0.32	
	15-20	0	0	0	0	0	0	0	1	0	0	0.10	0.32 0.32	
	20-25	0	0	0	0	0	1	0	0	0	0	0.10 0.00	0.32 0.00	
	25-30	0	0	0	0	0	0	0	0	0	0	0.00	0.00	
	Totels	3	5	3	1	1	2	2	4	0	1	2.20	1,55	
$\begin{aligned} & \text { Rov III, Column 1, } \\ & \text { (Falking) } \end{aligned}$				3		2	0	0	1	1	0	1.10	1.10	100
	5-10	0	0	1	1	0	2	0	0	0	0	0.40	0.71	
	10-15	0	0	1	0	2	0	0	0	0	0	0.30 0.00	0.87 0.00	
	15-20	0	0	0	0	0	0	0	0	0	0	0.00	0.00 0.00	
	20-25	0	0	0	0	0	$\bigcirc$	0	0	0	0	0.00 0.10	0.00 0.32	
	25-30	0	0	1	0	0	0	0	0	0	0	0.10	0.32	
	Totels	3	1	5	2	3	2	0	1	1	0	1.90	1.79	
Rov III, Columa 2, (sitting-軘iking)		0	2	1	0	0	0	2	0	0	0	0.50	0.85	40
	5-10	0	3	0	0	0	0	0	0	1	1	0.50	0.97 0.63	
	10-15	2	0	0	0	0	0	0	0	0	0	0.20	0.63	
	15-20	0	1	0	0	0	0	0	1	0	0	0.20 0.00	0.80	
	20-25	0	0	0	0	0	0	0	0	0	0	0.00 0.00	0.00	
	25-30	0	0	0	0	0	0	0	0	0	0	0.00		
	Totals	2	6	1	c	0	0	2	1	1	1	1.40	1.77	
$\begin{aligned} & \text { Row III, Colum } 3 \text {, } \\ & (5 i t t i n g) \end{aligned}$			1	0	0	0	0	1	1	1	0	0.40	0.52	100
	$5-10$	0	1	0	1	0	0	0	0	1	0	0.30	0.18 0.32	
	10-15	0	0	0	1	0	0	0	0	0	0	0.10	0.32	
	15-20	1	0	0	0	0	0	0	0	0	0	0.10	0.00	
	20-25	0	0	0	0	0	0	0	0	0	0	0.00 0.00	0.00 0.00	
	25-30	0	0	0	0	0	0	0	0	0	0	0.00	0.00	
	Totals	1	2	0	2	0	0	1	1	2	0	0.90	0.88	

RoLetive huatdity: 25\%
Temperature at 2 meter: $77.6^{\circ} \mathrm{F}$

Averege vind epeod: 3.6 mph

	$\begin{aligned} & \text { TIN } \\ & \text { Inrrival } \\ & \text { (Minutas) } \end{aligned}$												STATMRD   DJIAEIOA   OF $x$   $(8 x)$	
		1	$\underline{4}$	3	4.	5	6	7	6	9	10			
$\begin{aligned} & \operatorname{Rov} 1, \text { Columin } 1, \\ & (31 \text { tting }) \end{aligned}$	0. 5	2	8	4	5	2	1	0	3	3	5	\$. 70	2.63	100
	5-10	4	2	0	1	1	3	0	1	1	2	1.50	2.27	
	10-15	4	0	0	0	0	0	0	0	0	0	0.40	1.86	
	15-20	2	1	0	1	0	0	0	0	0	0	0.40	0.70	
	20-25	1	0	0	0	0	0	0	0	0	0	0.10	0.32	
	25-30	0	0	0	0	0	0	0	0	0	0	0.00	0.00	
	Sotela	13	5	4	7	3	4	0	4	4	7	5.10	3.41	
How $I_{1}$ Colume 2, (Wiking)	0-5	0	0	2	0	0	0	0	0	0	0	0.20	0.63	100
	5-10	0	0	0	0	0	0	0	0	0	0	0.00	0.00	
	10-15	0	0	0	0	0	0	0	0	0	0	0.00	0.00	
	15-20	0	0	0	0	0	0	0	0	0	0	0.00	0.00	
	20-25	0	0	0	0	0	1	0	0	0	0	0.10	0.32	
	25-30	0	0	0	0	0	0	0	0	0	0	0.00	0.00	
	Totals	0	0	2	0	0	1	0	0	0	0	0.30	0.67	
Row I, Columan 3, (S1tting-最2king)	0-5	5	0	3	2	1	5	2	5	2	0	2.60	2.12	100
	5-10	0	0	0	1	1	1	3	0	0	0	0.60	0.97	
	10-15	0	0	1	2	0	2	2	2	0	0	0.80	0.89	
	15-20	0	$\bigcirc$	0	0	0	0	0	0	0	0	0.00	0.00	
	20-25	2	0	0	1	0	1	0	2	1	0	0.70	0.82	
	25-30	0	0	0	0	0	0	0	0	0	0	0.00	0.00	
	Totals	7	0	4	6	2	10	7	9	3	0	4.80	3.85	
Row II, Column 1,  	0-5	0	3	6	14	14	4	0	1	0	3	4.70	5.35	100
	5-10	0	0	3	5	7	2	0	0	1	4	2.20	2.49	
	10-15	0	0	1	0	6	3	0	0	1	3	1.60	2.01	
	15-20	0	0	0	0	2	0	0	1	0	3	0.60	1.07	
	20-25	0	0	1	0	8	1	0	0	0	4	1.10	1.85	
	25-30	0	0	0	0	2	1	0	0	0	1	0.40	0.70	
	Totels	0	3	11	19	36	11	0	2	2	20	20.40	11.71	
Row II, Columan R, (31tting)	O- 5	0	1	1	0	3	0	0	1	1	0	0.70	0.05	100
	5-10	8	1	7	0	3	3	0	6	0	0	2.50	2.72	
	10-15	0	0	3	0	8	1	1	3	1	0	1.80	2.48	
	15-20	3	5	3	0	1	0	0	0	0	0	1.20	1.81	
	20-25	0	0	0	0	0	3	0	4	0	0	0.70	1.49 1.85	
	28-30	4	0	0	0	1	1	0	0	1	0	0.70	1.85	
	Totela	12	7	10	0	10	8	1	14	3	0	7.40	6.47	
$\begin{aligned} & \text { Rov II, Column } 3 \text {, } \\ & \text { (Falking) } \end{aligned}$			0								0	1.00	1.41	100
	- -10	1	0	1	0	0	1	0	1	2	8	1.10	1.52	
	10-15	1	0	1	0	0	0	0	0	1	0	0.30	0.46 0.70	
	15-20	1	2	1	0	0	0	0	0	1	1	0.80 0.20	0.70 0.48	
	20-25	1	1	0	0	0	0	0	0	0	0	0.20 0.10	0.42	
	85-30	0	1	0	0	0	0	0	0	0	0	0.10	0.38	
	Totala	4	4	3	1	$\bigcirc$	4	1	2	8	6	3.30	0.77	
$\begin{aligned} & \text { Rov III, Column } 1, \\ & \text { (VEIVIng) } \end{aligned}$			0	0	7	3	1	4	0	0	0	1.60	7.57	100
	- $\begin{aligned} & \text { 0-8 } \\ & \text { - }\end{aligned}$	4	0	0	3	4	0	7	0	0	0	1.80	2.53	
	10-15	1	0	2	3	3	0	0	1	0	1	1.10	1.19	
	15-20	0	0	0	1	1	0	0	0	1	1	0.40	1.63	
	20-28	0	0	0	0	2	0	0	0	0	0	0.20	0.63 0.00	
	25-30	0	0	0	0	0	0	0	0	0	0	0.00	0.00	
	Totals	8	0	2	14	13	1	11	1	1	2	8.30	8.67	
Row III, Golumn 2, (sitting-WeIking)												4.80	4.05	100
	$0-5$ $5-10$	15 6	2	2 5	4	2	3	2	2 3	5	3 2	4.20 3.00	1.63 0.67	
	$5-10$ $10-15$	1	1 0	0	0	1	1	1	1	2	0	0.70	0.67 1.33	
	$10-15$ $25-20$	2	2	0	0	0	0	2	1	2	4	1.30	1.33 8.11	
	20.25	1	0	0	0	1	0	1	1	2	7	1.30 1.60	2.43	
	25-30	2	2	0	0	1	0	3	1	3	4	1.60		
	Totels	26	7	7	9	6	6	11	9	20	20	12.10	7.18	
											6	5.80	5.39	100
Rov III, Columa 3, (sitting)	0-5	4	0	5	19	2	1		5	3	4	2.50	8.17	
	5-10	3	0	6	5	1	0	0	6	2	4	1.90	2.08	
	10-15	1	0	4	1	0	0	1	8	4	1	1.30	1.70	
	15-20	0	0	4	0	0	0	2	1	2	1	1.10	0.99	
	20-25	0	0	3 8		1 0	0	2 1	0	0	0	0.30	0.67	
	25-30	0	0	2	0	0	0							
	Totals	B	0	24	26	4	1	a	17	19	28	12.30	9.37	


epositions arg numberod gonseoutively in the olookwise dirootion Fith Pobition Mumber i being loontod at true aorth.

Copy
Number
1-2 Chief Chemioal Offioer, Department of the Army, Washington 25, D. C.

3- 4 Commanding General, U. S. Army Chemioal Corps Researoh and Development Comand, ATHN: Chief, Test and Evaluation Division, Washington 25, D. C.

5- 9 Commanding offioer, U. S. Army Chemioal Corps Biologioal Laboratories, ATIN: Direotor of Teohnioal Servioes, Fort Detriok, Frederiok, Maryland

10-14 Commanding offioer, U. S. Army Chemioal Corps Biologioal Laboratories, ATIN: Chief; Entomology Division, Fort Detriok, Frederiak, Maryland

15-16 Commanding ofiioer, U. S. Army Chemioal Corps Biologioal Laboratories, ATIN: Direotor of Development, Fort Detriok, Frederiok, Marjland.

17-18 Commanding offioer, U. S. Army Chemical Corps Biologioal Laboratories, Doouments Seotion, Teohnioal Information Division, Fort Dotriok, Frederiok, Maryland

19 Chemioal Corps Teohnioal Committee, Bldg. No. I, ATIN: Dr. T. S. Fokert, Seoretary, Army Chomioal Center, Maryland

20 President, U. S. Army Chemioal Corps Board, Army Chemioal Conter, Maryland

21-22 Direotor, U. S. Army Chemioal Corps Operations Researoh Group, Army Chemical Center, Maryland

23 Hxeoutive Direotor, U. S. Army Chemical Corps Advisory Counoil, Army Chemioal Center, Maryland

24-25 Comanding Offioer, U. S. Army Chemical Corps Intelligenoe Agenoy, ATIN: Doo. Library Branoh, Washington 25, D. C.

26-27 Commanding Offioer, U. S. Army Chemical Corps Field Hequirements Agenoy, AITN: Dr. Gardner, Fort MoClellan, Alabama

28-29 Commanding Offioer, U. S. Army Chomioal Corps Sohool, ATMN: Combat Developments Offiioe (CMLTC-SCD): Fort MoClellen, Alabama

30-36 U. S. Continental Army Comend Liaison Offioer, Bldg. No. 330, Army Chemioal Center, Maryland


Page 88 UHEASBIfIEL
DISTRBUTION LIST (Continued)

Copy
Number
37-38 Commandant, U. S. Marine Corps (Code A04FI) Washington 25, D. 0 .

39-40 Direotor of Army Researob; Offioe, Chief of Researoh and Development, Depertment of the Army, AIIN: Life.Soiences Division, Washington 25, D. C.

41-42 Commander, Wright Air Development Center, AIIN: WWBMP-3, Wright-Patterson Air Foroe Base, Ohio

43-44 Speoial Weapons Defense Offioe, Preventive Medioine Division, AFCSG-15, Offioe of the Surgeon General, Headquarters, USAF, Fashington 25, D. C.

45-46 Direotor, Air University Library, AITN: AUL-8649, Maxwell Air Foroo Base, Alabama

47 Comanding General, U. S. Army Medioal Corps Researoh and Development Command, ATMN: Major David N. Dalton, Washington 25, D. C.

48 Exeoutive Direotor, Operations Research Office, The John Hopkins University, 6935 Arlington Road, Bethesda, Maryland, Weshington 14, D. C.

49 Direotor of Division of Immunology, Walter Reed Army Institute of Researoh, Washington 12, D. C.

50 Chief́, Technioal Reference Library, Naval Medical Researoh Institute, Bethesde, Maryland

51 Office of the Chief of Naval Operations, Op-34] 1 , Navy Department, Washington 25, D. C.

52 Chief, Burean of Ships, Teohnioal Library, Code 312, Department of the Navy, Washington 25, D. C.

53-54 Canadian Army Teohnioal Representative, U. S. Army Chomioal Corps; Bldg. No. 330, Army Chemioal Center, Maryland

55-56 Mr. Ronald Holmes, Defonce Researoh Staff/2W, British Embassy, 3100 Messachusetts Avenue, N.W., Washington 8, D. C.

57-58 U. S. Technioal Representative, Defence Research Board, Ottawa, Ontario, Canada

## Copy <br> Number

Dugway Proving Ground
59 Commanding Offioer, ATIN: Soientifio Direotor
60 Direotor, Teohnioal Operations
61 Chief, Biologioal Division
62-63 Chief, Test Design and Analysis Office
64 Commanding Officor, U. S. Naval Unit
65-70 Chief, Teohnioal Library

AD $\qquad$ ACCESSION $\qquad$ Biological Branoh，TD\＆A，Teohnical Operations Direotorate，Dugway Proving Ground，Utah IMNTOMOLOGICAL FIHLD THST TEGENOLOGY，BELLL WETHER－II，Bio 531（U）．Short Title：BELLMETHER－ II（U）Technioal Report DPGR 293－illus－tables－ 89 pp with 8 Unolassified Abstract Cards．No－ vember 1961．BELLMETHRER－II，a continuation of the entomological field test teohnology studies started in BELLHETHER－I，investigated the ef－ feots of varying host distanoes，host oonoen－ trations，veotor／host ratios，and host movement in open terrain and the plaoement of host sam－ plers in a built－up area．Fourteen field trials， feach involving 80 to 100 military personnel， were a00omplished in September and October 2960 at Dugway Proving Ground，Utah．	UNCLASSIFIED   2．Mosquitoes   2．Insect bites   I．DPG Bio   531   II．Title   III．T1tla：   BELLNHTIEER－II	AD $\qquad$ ACCESSION $\qquad$   Biological Branoh，TDAA，Technical Operations Directorate，Dugway Proving Ground，Utah ENICMOLOGICAI FIELD TESS TECFNOLOGY，BELL－ BEIHKHR－II，Bio 531 （U）．Short Title ：BELLNETHERR－ II（U）Teohaical Report DPGR 293－illus－tables－ 89 pp with 8 Unolassified Abstract Cards．No－ vember 1961．BELLHEIHRYR－II，a oontinuation of the ontomologioal field test teohnology studies started in BHL工THIHBRR－I，investigated the of－ feots of varying host distances，host oonoen－ trations，veotor／host ratios，and host movement in open terrain and the placoment of host sam－ plers in a built－up area．Fourteen field trials， aach involving 80 to 100 military personnel， were aooomplished in September and Ootober 2960 at Dugway Proving Ground，Utah，	UNCLASSIFITHD   1．Mosquitoos   2．Inseot bites   I．DPG Bio 531.   II．Titio   III．Title：   BELLREMIHER－II
AD $\qquad$ ACCESSION $\qquad$   Biological Branch，TDaA，Teohnioal Operations Direatorate，Dugway Proving Ground，Utah ENNIOMOLOGICAL FIFLD TEST TEGHNOLOGY，BELLL－ WEITEIAR－II，Bio 531（U）．Short Title：BELLWETHEMR－ II（D）Teohnical Report DPCA 293－illus－tables－ 89 pp with 8 Jnolassified Abstraot Cards．No－ vember 1961．BRLHETHER II，a continuaition of the entomologicerl field test technology studies started in BELIMBIHBRR－I，investigated the of－ feots of varying host distances，host ooncen－ trations，veotor／host ratios，and host movement in open terrain and the plaoement of host sam－ plers in a built－up area．Fourtean field trials， each involving 80 to 100 military personnel， were acoomplished in September and Ootober 1960 at Dugwey Proving Ground，Dtah．	1．Mosquitoes   2．Insect bites   I．DPG Bio   531   II．Title   III．Titile：   BELLTEMTHRRR－I	AD $\qquad$ ACCESSION Biological Branoh，TD\＆A，Teohnical Operations Directorate，Dugway Proving Ground，Utah GNIOMOLOGICAL FIELD TEST TECENOLOGY，BELL－ NEIMHRR－II，Bio 531（U）．Short TItle：BELIMETHER－ II（U）Teohnioal Report DPGR 293－11lus－tables－ 89 pp with 8 Unolassified Abstraot Cards．No－ vember 1961．BELLABETHRR－IL，a continuation of the ontomological field test teohnology studies started in BELIMEIHKRR－I，investigated the of－ feots of varying host distanoes，host ooncen－ trations，veotor／host ratios，and host movement in open terrain and the plaoement of host sam－ plers in a built－up area．Fourteen field trials， eaoh involving 80 to 100 military personnel， were a ooomplished in September and Ootober 1960 at Dugway Proving Ground，Utah．	UNCLASSIFTEBD   1．Mosquitoos   2．Inseot bites   I．DPG Bio 531   II．Title   III．Title：   BELL WETHERR－IT


[^0]:    ${ }^{I}(U)$ From an examination of the raw data, it was evident that the assumptions required for the standard methods of analysis were not satisfied. Further, the appropriate transformation of the data could not be made since the form of the distribution of bites was unknown. Therefore, the above-desoribed distribution-free analysis was used instead. Standard analytical data such as bite means, their standard deviations, eto., tabulated for unit time intervals, are presented in Appendix B.

[^1]:    ${ }^{4}(\mathrm{U})$ The direotion of wind flow in the GPI-2 area during Trial E-2 perhaps needs further elucidation, GPI-2 lies in the mouth of the canyon whioh contained the southernmost of the two meteorological stations. This station was located near the water tank (see Figs. 9-12). At this station the winds reparted were generally southwest. The other station was situated on the flattening slope in the open 0.5 mile to the north of the area, and there the winds were generally southeast. An assumed southeast wind flow for the built-up area in the oanyon mouth was made for several reasons. The presence of two side canyons, with the larger one oriented south-west-to-northeast (see Figs, 9 and 12), could acoount for the southwest winds reported at the south meteorologioal station. The fact that the south-to-north extending upper canyon with its sharply rising walls would be in shadow earlier than the mouth would most probably result in a downflowing of relatively cool, dense air. This underiding, downflowing dense air would be subjeoted to a westward deflection both by the ourving ridge of rock at the canjon mouth (see Figs. 9, 10, and il) and by the general southeast windflow. Finally, this defleoted air would be given a northerly impetus when it reached the western oanyon wall, bringing it past station 24. The observed pattern of mosquito movement would further support this belief that the actual wind flow pattern in the built-up area was southeast to northwest. The known need for olose-in meteorologioal support in entomological field testing was clearly evidenoed in this phase.

[^2]:    meghage unclasimit

