THIS FILE IS MADE AVAILABLE THROUGH THE DECLASSIFICATION EFFORTS AND RESEARCH OF: # THE BLACK VAULT THE BLACK VAULT IS THE LARGEST ONLINE FREEDOM OF INFORMATION ACT / GOVERNMENT RECORD CLEARING HOUSE IN THE WORLD. THE RESEARCH EFFORTS HERE ARE RESPONSIBLE FOR THE DECLASSIFICATION OF THOUSANDS OF DOCUMENTS THROUGHOUT THE U.S. GOVERNMENT, AND ALL CAN BE DOWNLOADED BY VISITING: HTTP://WWW BLACKVAULT COM YOU ARE ENCOURAGED TO FORWARD THIS DOCUMENT TO YOUR FRIENDS, BUT PLEASE KEEP THIS IDENTIFYING IMAGE AT THE TOP OF THE .PDF SO OTHERS CAN DOWNLOAD MORE! # UNCLASSIFIED # AD NUMBER AD325247 CLASSIFICATION CHANGES TO: UNCLASSIFIED FROM: CONFIDENTIAL LIMITATION CHANGES TO: Approved for public release; distribution is unlimited. FROM: Controlling DoD Organization: Army Biological Labs, Fort Detrick, Frederick, MD. **AUTHORITY** OSD/WHS ltr dtd 1 Aug 2013; OSD/WHS ltr dtd 1 Aug 2013 # CONFIDENTIAL # AD 325 247 Reproduced by the # ARMED SERVICES TECHNICAL INFORMATION AGENCY ARLINGTON HALL STATION ARLINGTON 12, VIRGINIA | Chief, RDD, ESD, WI | of Defense SUSC SST Z | |---|-----------------------------------| | Date: <u>ZGHPRZ013</u>
Declassify: X | Authority: EO 13526 Deny in Full: | | Declassify in Part: Reason: MDR: 12-M-313 | 72 | DECLASSIFIED IN FULL Authority: EO 13526 Chief, Records & Declass Div, WHS Date: 2 6 APR 2013 R- # CONFIDENTIAL Best Available Con MOTICE: When government or other drawings, specifications or other data are used for any purpose other than in connection with a definitely related government procurement operation, the U. S. Government thereby incurs no responsibility, nor any obligation whatsoever; and the fact that the Government may have formulated, furnished, or in any way supplied the said drawings, specifications, or other data is not to be regarded by implication or otherwise as in any manner licensing the holder or any other person or corporation, or conveying any rights or permission to manufacture, use or sell any patented invention that may in any way be related thereto. Page determined to be Unclassified Reviewed Chief, RDD, WHS IAW EO 13526, Section 3.5 Uate: 2 6 APR 2013 #### COMMUNICATION THE GENERAL MILIS ELECTRONICS GROUP RESEARCH DEPARTMENT 2003 East Hennepin Avenue Minneapolis 13, Minnesota This document consists of 225 pages and is number 5 of 23 copies, series 6, and the following — attachments. FOURTH QUARTERLY PROGRESS REPORT ON DISSEMINATION OF SOLID AND LIQUID BW AGENTS (Unclassified Title) For Period 4 March - 4 June, 1961 Contract No. DA-18-064-CML-2745 Prepared for U. S. Army Biological Warfare Laboratories Fort Detrick Frederick, Maryland Submitted by: J/E. Upton for G. R. Whitnsh Project Manager Approved by: S. P. Jones, Manager Materials & Mechanics Research Report No. 2216 Project No. 82408 Date - August 10, 1961 SEP 25 1961 2 18 B. 44. CONFIGENCIAL #### FOREWORD Staff members of the Research and Development Departments who have participated in directing and conducting the investigations and preparing the discussions presented in this report include Mr. S. P. Jones, Jr., Mr. G. Whitnah, Mr. A. Anderson, Dr. J. Baumstark, Dr. J. Park, Mr. J. Upton, Mr. W. L. Torgeson, Mr. J. Nash, Mr. C. Hagberg, Mr. P. Stroom, Mr. G. Morfitt, Mr. L. Graf, Mr. R. Griffith, Mr. I. Hall, Mr. J. Pilney, Mr. R. Dahlberg, Mr. J. Ungs and Miss M. Johnson. #### ABSTRACT This Fourth Quarterly Progress Report presents the research on dissemination of solid and liquid agents. The research on this project is directed toward the development of weapon systems for linescurce dissemination from high-speed, low-flying aircraft. It has been found that the viability of Sm subjected to air streams simulating a jet engine exhaust is radically affected. Compection tests on Sm showed some viability reduction. Measurements were made of the coefficient of friction and the bulk density of various powders. A theoretical analysis of the force required to lift a disk embedded in a dilatent material was conducted. Theoretical results were in good agreement with experimental data. Thermal conductivity and viscosity measurements of egg slurries were carried out. Rheological properties of Sm slurries were investigated and data are presented. Boundary layer studies are reported which indicate that wind tunnel tests on deagslomeration are slightly conservative as compared to actual flight conditions. High-speed motion pictures presented in this report give an insight into the breakup of Sm agglomerates. Deagglomeration to primary particles of Sm has been observed. An investigation of the store-carrying capacities of an unmanned aircraft and a preliminary design of a liquid disseminating unit is included in the Appendices. Page determined to be Unclassified Reviewed Chief, RDD, WHS IAW EO 13526, Section 3.5 Date: 2 6 APR 2013 #### CONFIDENTIAL # TABLE OF CONTENTS | 7. | etion · | Page No. | |----------------|--|----------| | 1, | INTRODUCTION | . 1 | | 2. | EFFECT OF ELEVATED AIR STREAM TEMPERATURES ON THE VIABILITY OF SERRATIA MARCESCENS AEROSOLIZED FROM LIQUID SUSPENSION. | . 2 | | | 2.1 Experimental 2.1.1 Sampling of Asrosols | 9 | | | 2.1.2 Viability Determinations 2.2 Results and Discussion | la la | | 3. | EXPERIMENTS ON THE CHARACTERISTICS OF POWDERS | 10 | | | 3.2 Coefficient of Friction Between Powders and Channel Walls | . 10 | | | Materials 3.3 Average Bulk Density of Talc Powder and Sm Under Various | | |)a | Compressive Forces | | | 7. | THEORETICAL STUDY OF POWDER MECHANICS 4.1 Analysis of the Force Required to Lift a Long Cylindrical Rod from a Granulan Rod | | | | Rod from a Granular Bed 4.2 Analysis of the Force Required to Lift an Imbedded Disk from a Granular Red | | | | from a Granular Bed | · 36 | | 5. | INVESTIGATIONS OF PROPERTIES OF SLURRIES 5.1 Properties of Rgg Slurries 5.1.1 Viscoutty of Rgg Slurries | 1. = | | | 5.1.2 Thermal Conductivity of Res Sturming | • 45 | | | 5.2.1 Effect of Surface Active Agent on the Rheelogy of | • 53 | | | 5.2.2 Apparatus for Capillary Viscometry Studies | EO | | , | yand Demarties of Sm Sturries | . 61. | | O ₄ | BOUNDARY LAYER STUDIES 6.1 Boundary Layer on an Aircraft Store 6.2 Boundary Layer in Mind Thomas | Ln. | | 7. | 6.2 Boundary Layer in Wind Tunnel DISSEMINATION AND DEAGGLOMERATION STUDIES | | | • | 7.1 Motion Picture Study of Sm Dissemination . 7.2 Sm Dissemination - Particle Size Distribution | ~~ | | 8. | A STUTE OF THE REFECT OF COMPACTION ON THE STARTITUM OF A DOW | 99 | | | SIMULANT MATERIAL | 101 | | | | | | | V DECLASSIFIED IN FULI
Authority: EO 13526 | L | COMPRENE | TABLE | OF | CONTRIVE (| Con | tinued | |-------|----|------------|-----|--------| | | | | | | | | rage and the second sec | NO. | |-----|--|-----| | 9. | Systems study | 104 | | 10. | FORK ON LIQUID AGENT DISSEMINATING STORE | .10 | | 11. | SUMMARY AND CONCLUSIONS | 11 | | | LPPENDIX A - STUDY OF COMPATIBILITY OF EXTERNAL WING-MOUNTED BW STORES WITH THE AN/USD-5 (XE-1) DRONE | | | | PPENDIX B - PRELIMINARY DESIGN OF AN AIRBORNE UNIVERAL EXTERNAL STORE
FOR LINE SOURCE DISSEMINATION OF LIQUID BY AGENTS | | DECLASSIFIED IN FULL Authority: EO 13526 Chief, Records & Declass Div, WHS Date: 2 6 APR 2013 Ī T. # CONFIDENTIAL # LIST OF ILLUSTRATIONS | 12 | | and the Committee of th | | |--------------|--------
--|--------------------| | | Figure | | Page No. | | W17 7 | 2.1.1 | Thermal Exposure System for Sm Aerosols | | | | | (Shown with Insulation Removed) | -· 5 -·· ·· | | | 2.2.1 | Effect of Heated Air Streams on the Viability | | | I | | of Aerosols of S. Marcescens | 7 | | _ | 3.1.1 | Piston-Cylinder Data on Talc | 12 | | | 3.1.2 | Piston-Cylinder Data on Sm | 13 | | | 3.1.3 | Comparison of Piston-Cylinder Data on Tale for Cylinders of Different Surface Boughness | 15 | | | 3.1.4 | Comparison of Piston-Cylinder Data on Tale for Cylinders of Different Diameters | .17 | | | 3.2.1 | Figure 3.2.1 Force Diagram | 18 | | F | 3.3.1 | Average Bulk Density (ρ) of Talc as a Function of Flug Length (L) Under a Compressive Force of 5.72 x 10 9 Dynes/cm 2 | 24 | | 1 | 3.3.2 | A Plot of $(\rho - \rho_0)$ Vs L ^{1/3} for Tale Under a Compressive Force of 3.72 x 10 ⁵ Dynes/cm ² | 25 | | | 3.3.3 | Average Bulk Density (ρ) of Tale as a Function of Plug length (L) for Various Compressive Forces | 26 | | | 3.3.4 | Average helk Density () of Sm as a Function of Plug length (L) for Various Compressive Forces | 27 | | | 3.3.5 | A Plot of the Constants β , k, and ρ (L=0) for Talc to the Compressive Force | 28 | | | 3.3.6 | A Plot of the Constants eta , k, and $eta_{(L=0)}$ for Sm vs the Compressive Force | 29 | | | 4.1.1 | Nomenclature for Analysis of Stresses in a Granular
Bed - Two Dimensional Loading P g/cm | 33 | | | 4.1.2 | Theoretical Two-Dimensional Slip Surface; $\phi = 30^{\circ}$, $P/T/d^2 = 5$ | 3 3 | | 4: | 4.1.3 | Point Load in a Two Dimensional Bed of Powder | | | | | with a Virtual Force to Correct for Boundary
Conditions on the Surface of the Bed | 35 | | r
Ii | | DEG! 100mm | | vi1 COMPINITION ## CONFIDENCIAL # LIST OF ILLUSTRATIONS (Continued) | I | Figure | | Page No. | |---|--------|--|----------| | 4k | 4.2.1 | Point Load in a Three Dimensional Bed of Powder | - 37 | | | 4.2.2 | Graph of f vs Zo/d | 39 | | I | 4.3.1 | Force Required to Lift an Imbedded Disk from Granular Bed vs \mathbf{Z}_0/\mathbf{d} | 40 | | _ | 4.3.2 | Direct Shear Test Apparatus | 41 | | | 4.3.3 | Shear Strength Characteristic for 200
Micron Glass Beads | 42 | | | 5.1.1 | Consistency Curves for W.E.S. No. 1 and No. 2 at 20°C | 47 | | TE . | 5.1.2 | Thermal Conductivity Cell | 49 | | II | 5.1.3 | Thermal Conductivity of Egg Slurries | 50 | | Paralle de la constante | 5.2.1 | Consistency Curves for Sm Slurries without an Additive at 20°C | 55 | | II. | 5.2.2 | Shear Rate Versus Number of Bob Revolutions
for 25% by Weight Sm Slurry | 58 | | | 5.2.3 | Capillary Viscometer | 60 | | | 6.1.1 | Boundary Layer Thickness for NACA 65A Store of f = 8.0 | 64 | | | 6.1.2 | Boundary Layer on NACA 65A Series Store of f = 8.0 | 66 | | i. | 6.1.5 | Velocity Profile in Turbulent Boundary Layer | 69 | | | 6.2.1 | Boundary Layer Development in Kigh Velocity Wind | 70 | | | 6.2.2 | Velocity in Houndary Layer for Agent Store and
High Velocity Wind Tunnel | 72 | | | 7.1.1 | Dissemination of Sm "A" with Bulk Density 0.33 gm/cc in Mach 0.50 Air Stream | 74 - 75 | | | 7.1.2 | Dissemination of Sm "A" with Bulk Density 0.33 gm/cc in Mach 0.65 Air Stream | | viii CONSIDENTIAL DECLASSIFIED IN FULL Authority: EO 13526 Chief, Records & Declass Div, WHS Date: 2 6 APR 2013 # LIST OF ILLUSTRATIONS (Continued) | T. | Figure | | Page No. | |----------|--------|---|-----------| | Æ | 7.1.3 | Dissemination of Sm "A" with Bulk Density 0.33 gm/cc in Mach 0.80 Air Stream | 79 - 80 | | 1 | 7.1.4 | Dissemination of Sm "B" with bulk density 0.33 gm/cc in Mach 0.5 Air Stream | 81 - 82 | | Î | 7.1.5 | Dissemination of Sm "B" with Bulk Density 0.33 gm/cc in Mach 0.80 Air Stream | 83 - 84 | | I | 7.1.6 | Dissemination of Sm "A" with Bulk Density 0.43 gps/cc in Mach 0.50 Air Stream | 86 - 87 | | ii
Ii | 7.1.7 | Dissemination of Sm "A" with Bulk Density 0.43 gm/cc in Mach 0.65 Air Stream | 88 - 89 | | | 7.1.8 | Dissemination of Sm "A" with Bulk Density 0.43 gm/cc in Mach 0.80 Air Stream | 90 - 91 | | I | 7.1.9 | Descentiation of Sm "A" with Bulk Density 0.49 gm/cc in Mach 0.50 Air Stream | 92 - 93 | | 1 | 7.1.10 | Dissemination of Sm "A" with Bulk Density 0.49 gm/cc in Mach 0.65 Air Stream | 94 - 95 | | ī | 7,1,11 | Dissemination of Sm "A" with Bulk Density 0.49 gm/cc in Mach 0.80 Air Stream | 96 - 97 | | 11 | 8.1 | Compaction Device, Disassembled | 1.02 | | I | 9.1 | Probability of Infection for Infinite Line Source (h=100 ft., Open Terrain, Favorable Weather Conditions) | 107 - 108 | DECLASSIFIED IN FULL Authority: EO 13526 Chief, Records & Declass Div, WHS Date: 2 6 APR 2013 I #### CONTIDENSIO # LIST OF TABLES | <u>Tal</u> | ble No. | Page No. | |------------|--|----------| | 2.2 | Effect of Elevated Air Stream Temperatures on the Visbility of <u>Serratia Marcescens</u> Aerosolized from Liquid Suspension | 8 . | | 2.2 | 2.2 Effect of Incubation Temperature on the Recovery of Aerosols of Serratia Marcescens Exposed to an Air Stream Temperature of 75°C | 9 | | 3.1
[| .1 Physical Dimensions of Cylinders and Pistons Used in Friction Measurements | 11 | | 3.1
(B) | .2 Values of the Term C ₁ // for Talc Powder and Sm for Various Cylinder Materials | 14 | | , | Average Surface Roughness of the Inside of Various Cylinders Used in Experiments | 16 | | 3.2 | .1 Coefficient of Friction of Tale Powder and Sm from Tilting Table Method | 20 | | 3.2 | .2 Values of the Constant C ₁ | 21 | | 3.3 | .1 Values of the Constants β k, and $\rho_{(I=0)}$ for Tale Powder and Sm Under Various
Compressive Forces | 30 | | 5.1 | Apparent Viscosity of W.E.S. No. 1 Versus Shear | 46 | | 5.1. | .2 Apparent Viscosity of W.E.S. No. 2 Versus Shear Rate | 46 | | 5.1. | Thermal Conductivity of Egg Slurry Samples | 52 | | 5.2. | | 61 | | 9.1 | Table 9.1 Symbol Definition | 105 | | E | | | DECLASSIFIED IN FULL Authority: EO 13526 Chief, Records & Declass Div, WHS Date: 2 6 APR 2013 THE PROPERTY AND ADDRESS OF THE PARTY ADDR #### 1. INTRODUCTION This is the Fourth Quarterly Progress Report on the program of research on dissemination of solid and liquid BW agents, being conducted under Contract No. DA-18-064-CML-2745. This research is directed toward the development of disseminating stores to be carried externally on high-performance delivery aircraft. The three-month period covered by this report is a part of Phase II, which was started in December 1960. The objective of Phase II, in the field of solid agent dissemination, is to advance the state of knowledge in the areas of characterization, dalivery, matering, dissemination and deagglomeration of finely-divided solid materials, to provide data for design of a research prototype disseminator. In the field of liquid agent dissemination, Phase II includes the design of a research proto-type disseminator and the fabrication of one unit. This report presents progress in several investigations currently being conducted to meet these objectives. Because of the large scope of this project, a number of relatively independent studies are required. Most of the subjects discussed in this report were introduced in our Third Quarterly Progress Report 1.1, to which the reader is referred for additional background information. ^{1.1} General Mills, Inc. Report No. 2200, Dissemination of Solid and Liquid EW Agents, (unclassified title) May 15, 1961 (Confidential). 2. EFFECT OF ELEVATED AIR STREAM TEMPERATURES ON THE VIABILITY OF SERRATIA MARCESCENS AEROSOLIZED FROM LIQUID SUSPENSION Killing of airborne bacteria by means of disinfectants in aerosol form or by gases, ultraviolet radiation and incineration has been and continues to be an important area of interest in the field of microbiology. It is recognized that incineration brings about complete sterilization of contaminated air. However, to the author's knowledge, information on the effect of exposing biological aerosols for short periods of time to temperatures below that of incineration is nonexistent. The purpose of the experiments reported here was to obtain data which will enable prediction of the effect of mixing a viable biological serosol with the hot exhaust gases of a jet engine. The present report explores the possibility of viability loss in an serosol composed of <u>Berratia marcescens</u> (Sm) when the organisms are exposed for a period of 1.7 seconds to various temperatures. The 1.7 second exposure time used in these experiments was chosen from an analysis of the jet plume of the North American F-100, as presented in North American Aircraft Report NA-60-1403. An exposure time as large as 1.7 seconds was considered necessary in order to account for turbulent mixing effects which exist at the point of interception of the serosol streamlines with the plume. It is planned to continue this work by studying the effect of shorter exposure times at various temperatures. #### 2.1 Experimental Call suspensions of Sm which were used in these aerosol studies were prepared from pellets of the organism furnished by Fort Detrick. The apparatus used in these experiments is shown schematically in Figure 2.1.1. A five gallon - 2 - Participation and glass carboy, which serves as the serosol chamber, is connected to two identical 91.5 x 2.5 cm glass tubes by means of a "Y" tube. Heated air is mixed with serosol in one of the tubes while room air is mixed with the other half of the serosol. The unheated serosol, which receives room air, serves as the control sample. During the course of experiments in which both legs of the apparatus received unheated air it was found that the control leg of the apparatus received approximately 1.3 times as much serosol as the heated leg. If the serosol chamber with "Y" tube was turned through 180°, then with both legs unheated it was found that the control leg received only 1/1.3 times as much serosol as the heated leg. Therefore, unequal flow through the two legs was caused by the "Y" tube flow-splitter. Consequently, all percent recovery data from heated runs were multiplied by the factor 0.76. Aerosols were generated using a modified Vaponephrin nebulizer charged with six all of the cell suspension. ## 2.1.1 Sampling of Aerosols Aerosols were sampled simultaneously from both the heated leg of the apparatus and the unheated control leg using All Glass impingers. The flow rate in all cases was 12.5 liters per minute with all runs having a duration of 15 minutes. An individual particle or organism was exposed for a period of 1.7 seconds to the heated air stream. This was true for all runs to be discussed. Approximately 10¹⁰ viable organisms were collected in the control impinger during a 15 minute run. The collecting fluid was 10 ml of sterils tryptose saline diluent (composition described below) plus two drops of sterile olive oil to reduce foaming. After the 15 minute COMMONITAL sampling period had slapsed, the impingers were removed from the apparatus and cooled in an ice bath. After cooling, the contents were quantitatively transferred to 50 ml volumetric flasks and diluted to volume with tryptose saline diluent. After thorough mixing, the contents of the volumetric flasks were serially diluted for viability determinations. ## 2.1.2 Viability Determinations The medium used in viability determinations was composed of the following: Wilson's pertons 2.0 g Cerelose 0.5 g NaCl 0.5 g Agar 2.5 g Distilled water to 100 ml pH adjusted to 6.8 Serial dilutions were made in tryptose saline diluent of the following composition: Tryptose 0.1 g NaCl 0.5 g Distilled water to 100 ml All viability determinations were made using sterile plastic petri dishes. After the plates were poured, they were placed in a 37°C incubator for a period of two hours prior to plating. This treatment removed any excess moisture which might interfere with subsequent development of colonies. Samples of 0.1 ml from the final dilution were streaked on the surface of the - 5 - CONFIDENCIAL agar plates with sterile glass streaking rods. The plates were then incubated at a temperature of 37°C. #### 2.2 Results and Discussion The effect of heated air streams on the viability of Sm in serosol form is presented in Table 2.2.1. These data represent the average percent recoveries determined from at least six separate tests at each temperature. Each determination was based on the serosolisation and collection of approximately 10¹⁰ viable organisms. The same results showing the mean percent recovery and the deviation of the mean are presented in Figure 2.2.1. The decrease in viability at 50°C amounted to about 51%, at 75°C 72%, at 100°C 92%, and at the maximum temperature of 125°C, a decrease of 99% From these results it is readily apparent that aerosols of Sm are significantly affected by heated air. Since it is generally known that serosols of vegetative organisms exhibit an appreciable decay rate even under optimum conditions, the results obtained in these experiments were not unexpected. As in other types of experiments where bacteria in serosol form are subjected to lethal agents, e.g., UV radiation, the susceptibility of the organisms is usually a function of the medium in which the organisms are grown, the phase in the growth cycle at which the organisms are harvested, the matrix surrounding the organism(s) after the water surrounding the nebulized droplet has evaporated, and the conditions of the experiment. DECLASSIFIED IN FULL Authority: EO 13526 Chief, Records & Declass Chief, Records & Declass Div, WHS Date: 2 6 APP 2013 FIGURE 2.2.1 EFFECT OF HEATED AIR STREAMS ON THE VIABILITY OF AEROSOLS OF 8. MARCESCENS COMMENSATION I #### TABLE 2.2.1 # EFFECT OF ELEVATED AIR STREAM TEMPERATURES ON THE VIABILITY OF SERRATIA MARCESCEMS AEROSOLIZED FROM LIQUID SUSPENSION | Temperature, *C | Recovery, Percent* | Mean Deviation | |-----------------|--------------------|----------------| | 25 | 100 | | | 50 | 49 | 2.8 | | 75 | 28 | 3,5 | | 100 | 8 | 1.6 | | 125 | 0.8 | 0.5 | Duration of all runs was 15 minutes. ## *Average of six determinations It was previously stated that the incubation temperature was 37°C. Since this temperature would be considered by some investigators to be slightly higher than optimum for 8. marcescens, the possibility existed that somewhat different results might be found if the organisms were incubated at a lower temperature. Such a possibility exists because of the results of Anderson. 2.1.1 who found that Escherichia coli B, following irradiation with ultraviolet light, produced significantly more colonies when incubated at 40°C rather than the customary 30°C. In order to determine whether or not the results of these experiments were influenced by the 37°C incubation temperature, two additional determinations were made at an air stream temperature of 75°C. From each run, 12 plates were prepared from the control leg and 12 plates from the heated ^{2.1.1} Anderson, E. H., Heat Reactivation of Ultraviolet-inactivated Eacteria. J. Bacteriol. 61, 389 (1951). ## CONFIDENTIAL sample. Six control plates and six plates from the heated sample were placed in the 57°C incubator. The remaining six plates from each of the samples were incubated at room temperature. The results of this experiment are presented in Table 2.2.2. #### TABLE 2.2.2 #### REFECT OF INCUBATION TEMPERATURE ON THE RECOVERY OF AEROSOLS OF SERRATIA MARCESCENS EXPOSED TO AN AIR STREAM TEMPERATURE OF 75°C #### Recovery, Percent | Run Numbers | 37°C (Incubation Temp.) | 25°C (Incubation Temp.) | |-------------|-------------------------|-------------------------| | 1
| 32 | 31 | | 2 | 30 | 28 | From these results it can be seen that a lower temperature of incubation produces fewer colonies of the organisms from the heated sample. Whether these results are statistically significant or not must await further experimentation. However, it does appear that the 37°0 incubation temperature is not deleterious to optimum growth of the organism. Since the results of these experiments indicate an appreciable decrease in the viability of the organisms even at fairly low temperatures, the proximity of the disseminating device to the jet engine will be a significant parameter in the design of a BW delivery system. > DECLASSIFIED IN FULL Authority: EO 13526 Chief, Records & Declass Div, WHS 2 6 APR 2013 - 9 - ### 3. EXPERIMENTS ON THE CHARACTERISTICS OF POWDERS In order to determine those fundamental properties of finely-divided dry powders which affect their feeding and handling characteristics, information is being obtained on the coefficient of friction of powders sliding against various materials, the bulk density of powders as a function of compressive load, and the shear strength of powder beds. Correlation will then be sought between these characteristics and the output and energy required to operate feeding devices such as pistons and screw feeders. # 3.1 Frictional Forces Between Powders and Channel Walls In a previous report, 3.1.1 results were given for the frictional forces between tale powder and a glass cylinder. The experimental technique was described and a theoretical relationship derived for the forces involved. This relationship is: $$\frac{F_{A}}{F_{R}} = \epsilon^{\frac{L}{D}\frac{\mu C_{1}}{D} L}$$ (3.1) where: FA = force applied at one and of a plug of powder confined in a cylinder F_{R} = resistive force at the other end of the plug of powder μ = coefficient of friction between powder and cylinder wall C1 = constant D = dismeter of confining cylinder L = length of compressed plug of powder. According to this equation, a plot of the logarithm of F_A/F_R vs L/D should be a straight line. 3.1.1 General Mills, Inc. Report No. 2200, Third Quarterly Progress Report on Dissemination of Solid and Liquid BW Agents (Unclassified Title) May 15, 1961, pp. 5-16 (Confidential). The term $C_1 \not\sqsubseteq$ can be calculated from the slope of the line. The exact value, of the coefficient of friction μ cannot be determined because c_1 is not known. C1 is the ratio of the forces within the powder bed which are perpendicular and parallel to the applied force (i.e., $c_1 = \frac{F_+}{F_{ii}}$). During the period covered by this report, tests were performed in cylinders of various materials using tale powder and finely ground Am. The results of these tests are shown in Figures 3.1.1 and 3.1.2 (in the form of the best straight line through the data points for a given cylinder material). The cylinders used were not all the same length or diameter. The physical dimensions of the various cylinders are presented in Table 3.1.1. TABLE 3.1.1 PHYSICAL DIMENSIONS OF CYLINDERS AND PISTONS USED IN FRICTION MEASUREMENTS | Cylinder
Material | Length (in) | I.D.
(in) | 0.D.
(in) | Piston Diameter (in) | |----------------------|-------------|--------------|--------------|----------------------| | Glass . | 7 | 1.185 | 1.37 | 1.182 | | Aluminum | 18 | 1.500 | 1.90 | 1.486 | | Teflon | 12 | 0.895 | 1.50 | 0.891 | | Stainless Steel | 18 | 1.500 | 1.90 | 1.486 | The values for the term $c_1\mu$ were calculated from the slopes of the lines in Figures 3.1.1 and 3.1.2 and are given in Table 3.1.2. Page determined to be Unclassified Reviewed Chief, RDD, WHS IAW EO 13526, Section 3.5 Uate: 2 6 APR 2013 # VALUES OF THE TERM C1 11 FOR TAIC POWDER AND Sm FOR VARIOUS CYLINDER MATERIALS | Cylinder | 0111 | |-----------------|--| | Glass | 0.279 | | Aluminum | 0.319 | | Teflon | 0.358 | | Stainless Steel | 0.315 | | Class | 0.301 | | Aluminum | 0.256 | | Terlon | 0.306 | | | Glass Aluminum Teflon Stainless Steel Glass Aluminum | In all of the tests at least four different values of $F_{\rm R}$ were tested. These values for the different cylinders are: | Glass | 35.0, 84.2, 134.1, and 183.3 gm | |-----------------|---------------------------------| | Äluminum | 77, 170, 357, and 450 gm | | Teflon | 21.7, 49.5, 76.7, and 104.5 gm | | Stainless Steel | 77, 170, 357, and 450 gm | There was some question as to what effect the surface roughness of the cylinder material had on the friction measurements. To study this effect, an aluminum cylinder of similar dimension to the one previously used was polished on the inside and a series of tests were made with tale powder. The data obtained are shown in Figure 3.1.3, indicating that the surface roughness, as encountered in these tests with aluminum, is not an influencing factor. The surface roughness of the inside of all the cylinders was measured with the Page determined to be Unclassified Reviewed Chief, RDD, WHS IAW EO 13526, Section 3.5 Uate: A B ADD 2012 2 6 APR 2013 Surfindicator Model BL-1103.1.2 which measures "the arithmetical average deviation from the mean line" in micro-inches. Table 3.1.3 shows the surface roughness of the cylinders. #### TABLE 3.1.3 #### AVERACE SURFACE ROUGHNESS OF THE INSIDE OF VARIOUS CYLINDERS USED IN EXPERIMENTS | Cylinder
Material | Surface Roughness of
Inside of Cylinder | | |----------------------|--|--| | Glass | 2.5 - 4 midro-inches | | | Aluminum | 40 - 100 micro-inches | | | Teflon | 75 - 150 micro-inches* | | | Stainless Steel | 10 - 15 micro-inches | | | Polished Aluminum | 4 - 6 micro-inches | | * Estimated. Teflon is too soft to be measured with the instrument. A test was also conducted to determine what effect the inside dismeter of the cylinder had on the results. According to the theory developed, for any given powder and cylinder material, all points of the plot of log F_A/F_R vs L/D should be on the same straight line regardless of the cylinder diameter. Another aluminum cylinder was obtained which was 12 inches long by 0.825 inches inside diameter, and had an average surface roughness on the inside of 20-25 micro-inches. The cylinder was tested with talc powder and the results are compared with those of the 1.500 inches inside diameter aluminum tube in Figure 3.1.4. As can be seen, all the points can be adequately represented by the same straight line, indicating that cylinder diameter has no effect on the results. 3.1.2 Manufactured by Brush Electronics Company, Cleveland, Chic. A method of determining the coefficient of friction directly between powders and various materials is described by Cremer et al.^{3.2.1} In this method a plate of the material to be tested is sprinkled with powder and tilted until the mass of powder slides off. Figure 3.2.1 shows the force diagram. If the static friction is based on the conventional theory of Coulomb, then K= the frictional force L and: $$L = \mu N = \mu mg \cos \theta \tag{3.2}$$ 3.2.1 Cremer, E., F. Conrad and T. Kraus. "Die Haftfähigkeit von Pulvern und ihre Anvendung zur Bestimming von Korngrössen," Angewandte Chemie, Vol. 64, 1952, pp. 10-11. where: μ = coefficient of friction m = mass of the powder g = acceleration of gravity. From Figure 3.2.1 it can be seen that: $$K = \log \sin \theta$$. (3.3) Substituting for K and L we have: $$\operatorname{mg} \sin \theta = \mu \operatorname{mg} \cos \theta \tag{3.4}$$ or $$\mu = \tan \theta. \tag{3.5}$$ An attempt was made to measure the coefficient of friction of talc and &m by this manner with very little success. The difficulties encountered were: - 1. For small masses of powder, there was no angle at which the mass would slide (up to 90°). - 2. For larger masses, the powder would break away from the mass in varying amounts and slide off. The entire mass of powder would seldom slide off at the same time. It was also difficult to maintain uniform thickness of the mass of powder. In order to solve these problems, it was decided to compress a plug of powder in a hydraulic press and then use this plug of powder to determine the coefficient of friction by noting the angle at which it slides. A steel cyl-inder was obtained which had the dimensions: length 9", I.D. 1.60", 0.D. 2.37". The powder was sifted into this cylinder, compressed in the hydraulic press using a piston 1.57" in diameter, placed on a tilting table, 3.2.2 and the angle of slide measured. The angle of slide was measured by placing the plug 3.2.2 Manufactured by The Angle Computer Co., Glendale, California. No measurement of the compressive force was made for the measurements with talc powder. However, it is estimated that the force used was about 1.7×10^7 dynes/cm². For Sm, the force was varied from 1.7×10^6 to 1.0×10^8 dynes/cm², with no appreciable variation in the angle of slide. Thereafter, a force of 1.7×10^7 dynes/cm² was used for the tests. In Table 3.2.1 are the results of these tests. At least 10 measurements on the angle of slide were made on each material and the value given is the average of these measurements. CONFFICIENT OF FRICTION OF TALC POWER AND SM FROM TILITING TARIE METHOD. #### Tale Powder | Material | Average Angle
of Slide | Deviation | Coefficient of Friction | |-----------------|---------------------------|-----------|-------------------------| | Aluminum | .33 .6 ° | 2.4° | 0.664 | | Class | 30.7 | 4.8 | 0.594 | | Teflon | 36.2 | 1.2 | 0.732 | | Stainless Steel | 33.0 | ·3·5 | 0:649 | | | <u>Sm</u> | | | | Aluminum | 33.2 | 8.8* | 0.654 | | Class | 35.2 | 5.8 | 0.705 | | Teflon | 35.9 | 4.1 | 0.724 | | | | | | TABLE 3.2.2 VALUES OF THE CONSTANT C1 | | Tale | | | |-----------------|----------------|----------|----------------| | Material | Coefficient of | $c_1\mu$ | c ₁ | | | Friction (U) | | | | Aluminum | 0.664 | 0.319 | 0.481 | | Glass | 0.594 | 0.286
 0.482 | | Teflon | 0.732 | 0.358 | 0.489 | | Stainless Steel | 0.649 | 0.315 | 0.486 | | | Sm | | | | Aluminum | 0.654 | 0.256 | 0.392 | | Class | 0.705 | 0.301 | 0.427 | | Teflon | 0.724 | 0.306 | 0.423 | The average value of C_1 for talk powder is 0.484 and for Sm is 0.414. The variation of the value of C_1 for tale is much less than for 8π , indicating that the values for the coefficient of friction for talc and the various materials is probably more reliable (compare deviations in angle of slide, Table 3.2.1). These values for the constant, C_1 , indicate that with both tale and Smstress transmission in the powder bed is such that a force slightly less than one half of the applied force is created in a direction perpendicular to that of the applied force. > Page determined to be Unclassified Reviewed Chief, RDD, WHS IAW EO 13526, Section 3.5 Date: 2 6 APR 2013 In these tests the bulk density of the powder was determined as a function of the compressed length of the plug of powder under various loads. The apparatus used was an 18 inch length of aluminum pipe of 1.500 inch I.D., a 1.486 inch diameter piston, and various weights. The procedure was to sift a known weight of powder into the cylinder, place the piston on top of the powder, and measure the length of the compressed powder. Then additional weights were added and the length of the compressed powder plug was again measured. The compressed plug was removed from the cylinder and the process repeated with a different quantity of powder. Knowing the weight of the powder and the dimensions of the powder plug, the bulk density can be computed. This is the average bulk density since the density will vary along the entire length, being highest at a cross section next to the piston. A plot of the logarithm of bulk density ()) vs the length of the compressed plug (L) was made for each compressive force, resulting in a curve which could be represented by the relationship: $$\beta = \alpha + \beta \in -k L^{n}$$ (3.6) where α , β , and k are constants. If α is assumed to be the bulk density of the loose, uncompressed powder (P_0) , then the equation can be written: $$\beta - \beta_0 = \beta \epsilon^{-k} L^n$$ (3.7) A plot of log $(\rho - \rho_0)$ vs Lⁿ should be a straight line with intercept β and slope k. $$\rho = \rho_o + \beta e^{-k L^{1/3}}$$ (3.8) Figure 3.3.1 is a typical plot of log ρ vs L for a specified compressive load, and Figure 3.3.2 is a plot of log ρ vs L^{1/3} for the same compressive load. Figure 3.3.3 is a plot of the average bulk density of talk versus the length of compressed plug of powder under various compressive forces. Figure 3.3.4 is the same type of plot for Sm. Table 3.3.1 gives the values of the constants β and k for the various compressive forces for both talc powder and Sm. The value of $\beta_{(L=0)}$ is also given. This quantity is defined as the bulk density of the powder at a cross section next to the piston or compressive force. It is determined by adding the value of the loose bulk density of the powder (β_0) to the value of the intercept β . The value of the term k seems to be fairly constant for tale powder with an average value of 0.464. This is not true for Sm. There is a definite decrease in k with increasing compressive force. Figure 3.3.5 is a plot of the values of k, β , and $\rho_{(L=0)}$ for tale powder, and Figure 3.3.6 is a similar plot for Sm. In the future, it is planned to make tests on polyvinyl alcohol powder using the piston-cylinder and tilting table methods to measure the frictional properties, and also determine the bulk density under various compressive forces. It is also planned to measure the shear strength of tale powder, Sm, Page determined to be Unclassified Reviewed Chief, RDD, WHS IAW EO 13526, Section 3.5 Late: 2 6 APR 2013 Page determined to be Unclassified Reviewed Chief, RDD, WHS IAW EO 13526, Section 3.5 Uate: 2 6 APR 2013 and P.V.A. An attempt will be made to correlate these properties of the three powders to the feed rate of a screw feeder as reported previously 3.3.1 and with the torque required to operate the screw feeder. TABLE 3.3.1 VALUES OF THE CONSTANTS β , k, AND $\rho_{(100)}$ FOR TALC POWDER AND Sm UNDER VARIOUS COMPRESSIVE FORCES | Tale Powder | | | | | | |---|-------|---------|--------|--|--| | Compressive Force | B | k | P(I=0) | | | | $1.01 \times 10^{14} \text{ dynes/cm}^2$ | 0.227 | 0.483 | 0.380 | | | | $2.73 \times 10^4 \text{ dynes/cm}^2$ | 0.297 | 0.451 | 0.450 | | | | $5.32 \times 10^4 \text{ dynes/cm}^2$ | 0.354 | 0.467 | 0.507 | | | | 9.61 x 10 ⁴ dynas/cm ² | 0.426 | 0.481 | 0.579 | | | | $2.00 \times 10^5 \text{ dynes/cm}^2$ | 0.473 | وبلبا.ه | 0.626 | | | | 3.72 x 10 ⁵ dynes/cm ² | 0.557 | 0.456 | 0.710 | | | | | Sm | | | | | | $1.01 \times 10^4 \text{ dynes/cm}^2$ | 0.291 | 0.676 | 0.576 | | | | $2.73 \times 10^{14} \text{ dynes/cm}^2$ | 0.339 | 0.542 | 0.624 | | | | 5.32 x 10 ⁴ dynes/cm ² | 0.382 | 0.486 | 0.667 | | | | 9.61 x 10 ¹⁴ dynes/cm ² | 0.401 | 0.432 | 0.686 | | | | $2.00 \times 10^5 \text{ dynes/cm}^{2^{\circ}}$ | 0.432 | 0.381 | 0.717 | | | | $3.72 \times 10^5 \text{ dynes/cm}^2$ | 0.458 | 0.346 | 0.743 | | | | | | | | | | ^{3.3.1} General Mills, Inc. Report No. 2161, Second Quarterly Progress Report on Dissemination of Solid and Liquid BW Agents (Unclassified Title) Feb. 13, 1961, pp. 2-13 (Confidential). #### 4. THE ORETICAL STUDY OF POWDER MECHANICS In previous reports two basic approaches for studying the mechanical behavior of particulate materials have been examined. The first was based upon interactions among individual particles, ¹/₄. ¹ while the second dealt with bulk properties of powders. ¹/₄. ² During the current report period, additional theoretical and experimental work has been carried out along the lines of the second approach. A theoretical study has been made of the force required to lift a disk imbedded in material having dilatant properties. The results were found to agree well with experiments conducted with glass beads. These theoretical developments and possibilities for further research slong theoretical lines are discussed herein. # 4.1 Analysis of the Force Required to Lift a Long Cylindrical Rod from a Granular Bed Consider a long cylindrical rod imbedded in an elastic granular bed at a depth y_0 which is large compared with the diameter of the rod. The axis of the rod is parallel with the bed surface; also, the granular material is assumed to have a shear strength characteristic of the form: 4 .2 $$T = \sqrt{\tan \phi}$$ (4.1) The force required per unit length to lift the rod from the bed may be determined as follows. For a line load of magnitude P grams/cm, applied to an ^{4.1} General Mills, Inc. Report No. 2161, Second Quarterly Progress Report on Dissemination of Solid and Liquid BW Agents (Unclassified Title), Feb. 13, 1961, pp. 46-55. (CONFIDENTIAL). ^{4.2} General Mills, Inc. Report No. 2200, Third Quarterly Progress Report on Dissemination of Solid and Liquid BW Agents (Unclassified Title), May 15, 1961, pp. 22-38 (CONFIDENTIAL). $$G_{r} = \frac{2P}{\pi} \frac{\cos \theta}{r}$$; $G_{\theta} = t_{r\theta} = 0$ (4.2) The local condition for shear failure within the bed is defined by the expression: 4.2 $$\sin \phi = \frac{O_1 - O_2}{O_1 - O_2} \tag{4.3}$$ where \mathcal{O}_1 and \mathcal{O}_2 are major and minor principal stresses at a point within the granular bed (see Figure 4.1.1). If it is assumed that the initial stress distribution in the bed due to its weight is hydrostatic, the slip condition from Equations (4.2) and (4.3) becomes: $$\frac{1}{1 + \frac{\pi \gamma_0^2}{P} (\frac{r}{y_0}) \frac{(1 - \frac{y_0}{y_0})}{COS}}$$ (4.4) where γ is the density of the material. From an analysis of Equation (4.4) it is found that, for a given load P, there exists a region of nearly circular cross-section within which the material is in a state of shear failure, and an external region which is in statical equilibrium under the load P. The shape of the surface separating these regions is defined by the equation: $$\frac{r}{y^{\frac{1}{2}}} = -\sqrt{(\frac{y}{y^{\frac{1}{2}}}) \cdot (\frac{1-y^{\frac{1}{2}}}{1-y})}$$ (4.5) FIGURE 4.1.1 NOMENCIATURE FOR ANALYSIS OF STRESSES IN A GRANULAR BED - TWO DIMENSIONAL LOADING P g/cm FIGURE 4.1.2 THEORETICAL TWO-DIMENSIONAL SLIP SURFACE; $\phi = 30^{\circ}$, $P/T/d^2 = 5$ I I where y is obtained by solving the quadratic: $$y^{1} (1 - y^{1}) = \frac{P}{\sqrt{\pi y_{0}^{2}}} \frac{1 - \sin \phi}{\sin \phi}$$ (4.6) For $\phi = 30^{\circ}$ and $\frac{P}{717v_0^2} = 5$, the shape of the slip boundary is as shown in Figure 4.1.2. The force per unit length required to lift a smooth rod having a cross-sectional shape defined by the slip surface (Equation 4.5) is, from Equation (4.4): $$P = \pi \gamma_0 d \left(1 - \frac{d}{y_0}\right) \frac{\sin \phi}{1 - \sin \phi}$$ (4.7) where d = y defines the "diameter" of the nearly-circular rod. This equation is valid only for very small values of d/y_0 , since the boundary conditions at the surface of the bed are not satisfied by the approximate solution given above. This defect can be removed by applying an image load P' = P at the point $y = 2 y_0$ as shown in Figure 4.1.3. With this loading, the stresses at the surface $y = y_0$ vanish as required at the free surface. Carrying out an analysis similar to that given above, it is found that the required load per unit length is: $$P = \mathcal{T} \mathcal{J} y_0 d \left(1 - \frac{d}{2y_0}\right) \frac{\sin \phi}{1 - \sin \phi}. \tag{4.8}$$ These results are particularly interesting in that the load P varies linearly with the depth of immersion $y_{\rm o}$. FIGURE 4.1.3 POINT LOAD IN A TWO DIMENSIONAL BED OF POWDER WITH A VIRTUAL FORCE TO CORRECT FOR BOUNDARY CONDITIONS ON THE SURFACE OF THE BED # 4.2 Analysis of the Force Required to Lift an Imbedded Disk
from a Granular Bed An approximate analysis of the force required to lift an imbedded disk from a bed composed of elastic granules can be carried out along the lines of the above two-dimensional analysis. For a point load applied normal to the surface of a semi-infinite elastic solid, Boussinesq^{4.3} obtained the stress components: $$\mathcal{O}_{r} = \frac{3 P}{2 \pi} \frac{r^{2}z}{(z^{2} + r^{2})^{5/2}},$$ $$\mathcal{O}_{z} = \frac{3 P}{2 \pi} \frac{z^{3}}{(z^{2} + r^{2})^{5/2}},$$ $$\mathcal{T}_{rz} = \frac{3 P}{2 \pi} \frac{rz^{2}}{(z^{2} + r^{2})^{5/2}},$$ (4.9) where r and z are cylindrical coordinates (see Figure 4.2.1). Taking the origin at a point at depth z_0 from the surface of the bed, the requirement that the stresses be zero at the bed surface may be satisfied, as in the two-dimensional case, by considering a fictitious load $P^1 = P$ to act at the point $z = 2 z_0$. The stress distribution is then obtained by superposition using Equation (4.9). The slip condition is again given by Equation (4.2), on the assumption of a linear shear strength characteristic as expressed by Equation (4.1). Carrying out an analysis similar to those previously described, it was found that the force needed to lift an approximately spherical object of 4.3 Timoshenko, S. and J. N. Goodier. Theory of Elasticity, 2nd Edition, McGraw-Hill (1951), p. 85. FIGURE 4.2.1 POINT LOAD IN A THREE DIMENSIONAL HED OF POWDER - 37 - 1.5. Page determined to be Unclassified Reviewed Chief, RDD, WHS IAW EO 13526, Section 3.5 Date: 2 6 APR 2013 diameter d, imbedded to a depth so in a granular bed, is: \prod $$P = \frac{2\pi \gamma_{d3}}{3} \frac{\sin \phi}{1 - \sin \phi} \stackrel{?}{=} (\frac{2z_0}{d}) \qquad (4.10)$$ The function $f = (\frac{2 z_0}{d})(1 + \frac{d}{2 z_0})^2$ is plotted in Figure 4.2.2, indicating the way in which P varies with the depth z_0 . Although the load approaches a linear dependence on depth for large values of z_0/d in the axisymmetric case, it is apparent that a considerable departure from linearity occurs for small values of z_0/d . In the range $1.1 < z_0/d < 8.0$, the theoretical load is represented quite accurately by the power law: $Q \sim d^{1.625} \cdot z_0^{-1.375}$. ## 4.3 Discussion of the Theory and Comparison with Experiment The analytical results presented above conflict somewhat with earlier disk-lifting experiments which indicated that the force required to lift an imbedded disk from finely-divided materials such as tale, saccharin, etc., varies approximately as the 3/2 power of the depth. In order to check the validity of the theoretical conclusions for dilatent materials, disk-lifting experiments were conducted using glass beads of dismeter 100 and 200 microns, respectively. The apparatus and technique employed in these tests are described in an earlier report 4.1. The results are shown in Figure 4.3.1. Within the range covered by the experiments, the agreement between theory and experiment is very good. The shear strength characteristic employed in the theory (Equation 4.1) was also checked experimentally for the 200 micron glass beads using the apparatus shown in Figure 4.3.2. The results of these tests are shown in Figure 4.3.3. The shear angle obtained from the test data is $\phi = 26.8^{\circ}$. - 39 - Page determined to be Unclassified Reviewed Chief, RDD, WHS IAW EO 13526, Section 3.5 Date: 2 6 APR 2013 Ī FIGURE 4.3.1 FORCE REQUIRED TO LIFT AN IMBEDDEED DISK FROM GRANULAR BED VS Z /d' Jolly Balance Roughened Disk Test Material Roughened Surface FIGURE 4.3.2 DIRECT SHEAR TEST APPARATUS Page determined to be Unclassified Reviewed Chief, RDD, WHS IAW EO 13526, Section 3.5 Uate: 2 6 APR 2013 ľ Page determined to be Unclassified Reviewed Chief, RDD, WHS IAW EO 13526, Section 3.5 Date: FIGURE 4.3.3 SHEAR STHENGTH CHARACTERISTIC FOR 200 MICHON CHASS TRADS 2 6 APR 2013 some caution is necessary in interpreting these shear strength measurements because of possible limitations in the experimental technique. It appears that a direct shear test of this type, in which a tangential shear stress is applied to a thin layer of the meterial under test, as indicated in Figure 4.3.2, may constrain the meterial so as to prevent natural shear failure. Another difficulty with this type of test is that since the state of stress in the horisontal plane is not defined, the natural shear angle cannot be inferred from the test results. In spite of these possible short-comings, direct shear tests should be satisfactory for measuring the relative shear strength of granular and particulate meterials. In comparing the behavior of dilatant materials composed of relatively large particles with that of finely-divided organic powders, it is observed that the dilatant materials tend to flow whereas the latter materials often exhibit a tendency to break up and form lumpy aggregates when displaced. This difference in handling qualities may be attributed, at least in part, to two fundamental factors: (1) compactibility and (2) interparticulate forces. The role played by interparticulate forces is difficult to isolate from other factors when dealing with finely-ground powders. However, it is entirely feasible to generate controlled interparticle forces among relatively large rigid particles such as glass beads or steel shot. Since these materials are dilatant, the influence of compaction is eliminated, thus enabling a study of the effects of interparticle forces on the behavior of particulate materials. By conducting experiments with such materials, it is believed possible to gain considerable insight into factors responsible for the handling characteristics of dry materials. Accordingly, tests of this nature are planned in future work. At the same time, an effort will be made to extend the theory described herein to include effects of interparticle forces. ## 5. INVESTIGATIONS OF PROPERTIES OF SLURRIES During this reporting period, the viscosity and thermal conductivity of four egg slurry samples were determined. Additional information on the rheology and density of Sm slurries in a liquid fluorochemical was obtained. ### 5.1 Properties of Egg Slurries The viscosity of four egg slurries (W.E.S. #1, #2, #3 and #4) was redetermined using a new shipment of frozen samples received from Fort Detrick. One of the egg slurries used for previously reported viscosity determinations 5.1.1 contained large solid particles which clogged the capillary viscometer, thereby preventing attainment of meaningful measurements. Current data on the other three samples are presented for comparison purposes. The new egg slurry samples also were used in the determination of thermal conductivity as a function of temperature. ### 5.1.1 Viscosity of Egg Slurries The egg slurry samples designated W.E.S. #1, #2, #3 and #4 were evaluated using an Ostwald capillary viscometer. The two most viscous slurries (W.E.S. #1 and #2) were also evaluated in a concentric cylinder rotational viscometer (modified Stormer viscometer). Sample W.E.S. #1, when analyzed in the Stormer viscometer at 20°C, was found to be non-Newtonian in the shear rate range of 32 to 310 sec⁻¹. The apparent viscosities at different shear rates are presented in Table 5.1.1. ^{5.1.1} General Mills Report No. 2161, Second Quarterly Progress Report on Dissemination of Solid and Liquid EW Agents (Unclassified title) Feb. 13, 1961, p. 81 (Confidential). # APPARENT VISCOSITY OF W.E.S. #1 VERSUS SHEAR RATE | Shear Rate (sec-1) | Apparent Viscosity (centipoise) | |--------------------|---------------------------------| | 32 | 56.6 | | 79 | 46.2 | | 134 | 41.0 | | 190 | 38.5 | | 251 | 36.5 | | 310 | 35.5 | The apparent viscosity determined in the Ostwald viscometer was 43.1 centipoise. Sample W.E.S. #2 also was found to exhibit non-Newtonian flow behavior in the Stormer viscometer at 20°C. Table 5.1.2 shows the variation in apparent viscosity with shear rate for this slurry. TABLE 5.1.2 APPARENT VISCOSITY OF W.E.S. #2 VERSUS SHEAR RATE | Shear Rate (sec-1) | Apparent Viscosity (centipoise) | | |--------------------|---------------------------------|--| | 78 | 7.5 | | | 165 | 11.0 | | | 299 | 12.2 | | | 419 | 13.1 | | The apparent viscosity obtained in the Ostwald viscometer was 7.79 centipoise at 20°C. Figure 5.1.1 is a plot of the shear rate versus shear stress data obtained from the Stormer viscometer on samples W.E.S.-#1 and #2. The viscosity of slurries W.E.S. #3 and #4 was too low to be accurately evaluated in the Stormer viscometer. At 20°C, values of 1.66 and 1.35 centi- Page determined to be Unclassified Reviewed Chief, RDD, WHS IAW EO 13526, Section 3.5 Uate: 2 6 APR 2013 poise were determined in the Ostwald viscometer for the apparent viscosities of slurries W.E.S. #3 and #4 respectively. #### 5.1.2 Thermal Conductivity of Egg Slurries The thermal conductivity of egg slurry samples W.E.S. \$1, \$2, \$3 and \$44 was determined using the experimental apparatus and technique described in an earlier report. \$5.1.2 The thermal conductivity cell (Figure 5.1.2) contains two liquid canisters which are formed by three copper discs. The upper canister was filled with a reference liquid (water) and the lower canister with one of the four egg slurries under test. Water was chosen as a reference liquid because its thermal conductivity is well known, and its absolute value was believed to be close to that of the egg slurries. The upper solid line in Figure 5.1.3 is the average value for the thermal conductivity of water as reported in the literature, and the dotted lines represent the minimum and maximum values which have been found. \$5.1.3 By placing the cell on its side with the copper discs in a vertical position, the cell was easily filled without entrapping air bubbles. Liquid was slowly forced into the cell from the bottom until the canister overflowed. The canister openings were then sealed and the cell was inserted into a Styrofosm insulation sleeve. Constant temperature water from
a large, constant temperature bath was circulated through the heat sink. Readings from the six thermocouples in the copper discs were checked periodically for about forty-five minutes. When no further change in temperature was noted, the temperature drops across the canisters were recorded. ^{5.1.2} General Mills Report No. 2200, Third Quarterly Progress Report on Dissemination of Solid and Liquid BW Agents (Unclassified title) May 15, 1961, pp. 56-61 (Confidential). ^{5.1.3} International Critical Tables, Vol. 5, p. 227 - 49 - Page determined to be Unclassified Reviewed Chief, RDD, WHS IAW EO 13526, Section 3.5 Uate: 2 6 APR 2013 Page determined to be Unclassified Reviewed Chief, RDD, WHS IAW EO 13526, Section 3.5 Uate: 2 6 APR 2013 The cell was calibrated by filling both canisters with double-distilled water. Results of the calibration revealed a 2 percent systemic error as calculated from the following relationships which were presented in an earlier report: 5.1.4 $$q = K_w A \frac{\Delta T_w}{\Delta x} = K_g A \frac{\Delta T_g}{\Delta x}$$ (5.1) where: a = heat: q = heat flux through the cell K, = thermal conductivity of water Kg = thermal conductivity of slurry △T = temperature drop across the water layer $\Delta T_{\rm g}$ = temperature drop across the slurry layer A = area through which heat flows (equal for both liquids) Δ X = distance between the discs (equal for both liquids). Thus: $K_{\perp} \triangle T_{\perp} = K_{\parallel} \triangle T_{\parallel}$ (5.2) and: $K_{s} = K_{v} \frac{\Delta T_{v}}{\Delta T_{d}}$ (5.3) In calibrating with water in both canisters, $K_B = K_W$ and therefore it would be expected that $\triangle T_g = \triangle T_W$. However, a larger temperature drop was recorded across the upper canister for all runs regardless of whether the mean temperature of the water in either layer was above or below the ambient temperature. In each case, the error could be accounted for by applying a correction factor as follows: $$K_{\rm s} = K_{\rm w} \frac{\Delta T_{\rm w}}{\Delta T_{\rm s}}$$ (0.9786). (5.4) ^{5.1.4} General Mills, Inc. Report 2200, Third Quarterly Progress Report on Dissemination of Solid and Liquid RW Agents (Unclassified title) May 15, 1961, p. 59 (Confidential). It has been calculated that if the distance between the disks of the upper layer exceeded the thickness of the lower water layer by 0.002 inch, this difference could account for the consistent error. Such a small variation in thickness is beyond the ability to measure once the cell is assembled. In view of the constancy of the error, Equation 5.4 was used in calculating the thermal conductivity of the egg slurry samples. The thermal conductivity of egg slurry samples W.E.S. #1, #2, #3 and #4 are presented in Table 5.1.3. TABLE 5.1.3 | | W.E.S. #1 | F EGG SLURRY SAMPLES
W.E. | .s. # 2 | |---|---|---|---| | (°C) | $K_{gx} = 10^3$ (cal-cm/sec-cm ² -°C) | Temp. | K _s x 10 ³
(csl-om/sec-om ² -°C) | | 5.9
15.9
22.9
31.5
32.2 | 1.069
1.102
1.133
1.182 | 5.2
6.0
18.9
22.6
25.9
28.2 | 1.105
1.092
1.188
1.199
1.206 | | Temp. | W.E.S. #3
K _s x 10 ³
(cal-cm/sec-cm ² -°C) | Temp. | 8. #4
K _s x 10 ³
(cal-cm/sec-cm ² +°C) | | 6.0
11.8
12.7
19.6
24.5
29.0 | 1.213
1.277
1.277
1.328
1.329 | 6.8
10.9
19.1
24.5
24.9
27.9
32.4 | 1.285
1.299
1.329
1.355
1.367
1.391
1.418 | The data of Table 5.1.3 are presented in graphical form in Figure 5.1.3. The straight lines through the experimental points were calculated by the method of least squares and appear to be an adequate representation of the data. All of the lines have approximately the same slope, and the thermal conductivity values of the egg slurry samples fall within a range between 78 and 97 percent of the value for water. #### 5.2 Rheological Behavior of Sm Slurries Additional information on the flow characteristics of Sm slurries in a fluorochemical liquid have been determined. The density of these slurries has been measured, and an apparatus has been designed and is being built to study the flow behavior through capillary tubes. ### 5.2.1 Effect of Surface Active Agent on the Rheology of Sm Slurries Previously reported results 5.2.1 on the flow behavior of Sm slurries were obtained with samples containing a surface active agent designated L-1161 and manufactured by Minnesota Mining and Manufacturing Company. This fact was inadvertently omitted from the discussion of experimental results. The surface active agent was especially compounded by 3M for use with their fluorochemical liquids. Samples have been sent to Fort Detrick for determination of compatibility of the agent with biological materials. One tenth of one percent by weight of the fluorochemical liquid, FC-75, was used in the preparation of slurries for the earlier rheological investigations. It was assumed at the start of those investigations that a surface active agent would be needed to prevent phase separation since a small amount of Sm added to FC-75 and blended thoroughly came out of suspension rapidly. Investigations conducted during this report period have been designed to determine the stability of thick Sm slurries without a surface active agent, and the change in rheological properties caused by the omission of this agent. ^{5.2.1} General Mills, Inc. Report No. 2200, Third Quarterly Progress Report on Dissemination of Solid and Liquid BW Agents (Unclassified title), May 15, 1961, pp. 62-75). An attempt also was made to measure the viscosity of Sm slurries containing a concentration of solids greater than 25 percent by weight, the upper limit previously investigated. The same technique was followed in preparing the slurries which has been reported previously, except that no surface active agent was added. Results indicated that the apparent viscosity of alurries without additive was strongly dependent upon mechanical history. Therefore, it was necessary to obtain initial consistency curves at increasing and decreasing shear stress as well as consistency curves after extended periods of shearing at a constant shear stress. The initial consistency curves indicated that thick slurries (25 percent by weight Sm), subjected to only a small amount of prior shearing, exhibit thixotropy, i.e., apparent viscosity decreases with shear. However, upon shearing these slurries for extended periods of time at a constant shear stress, the initial trend toward a decrease in apparent viscosity is reversed and the apparent viscosity begins to increase. This latter phenomenon is called rheopexy. According to the literature, rheopexy can be exhibited by suspensions which contain anisometric particles. The increase in apparent viscosity is believed to be caused by shear-induced orientation of anisometric particles. Theopertic materials have been observed to retain this orientation for considerable periods of time following the removal of the shear stress. Consistency curves for Sm slurries without a surface active agent and containing 16.7, 25.0 and 28.6 percent by weight Sm are presented in Figure 5.2.1. All data were obtained at a temperature of 20°C. The experimental It was found that slurries containing 16.7 percent by weight 8m have nearly the same consistency curve with or without the surface active agent. Furthermore, the consistency curves obtained at increasing and then decreasing shear stress agree quite well for both slurries, but with some slight evidence of thixotropy in the case of the slurry without additive. After shearing the slurry continuously for 3000 revolutions at a shear stress of about 200 dynes/cm², the curve was shifted toward higher apparent viscosity. A slurry containing no additive and 25 percent by weight Sm initially exhibits considerable thixotropy as evidenced by the form of the consistency curves obtained at increasing and then decreasing shear stress. After shearing continuously for 3000 revolutions at a shear stress of about 1100 dynes/cm², the curve is shifted considerably toward higher apparent viscosities. Thus, the phenomenon of rheopexy becomes more prominent with increasing solids concentration. The consistency curve obtained on a slurry containing no additive and 28.6 percent by weight 8m is also presented in Figure 5.2.1. This slurry was much too thick to handle in the coaxial cylinder viscometer. The apparent high yield point made it difficult to remove air trapped below the bob upon immersion and prevented the slurry from flowing over the top of the bob when it was lowered into the cup. The curve presented was obtained at increasing Minimum yield points for Sm slurries containing 16.7 and 25 percent by weight of solids are indicated on the shear stress axis of Figure 5.2.1. These values were obtained by increasing the torque to the critical value which would induce rotation of the bob, even though rotation would subsequently cease. The change in apparent viscosity with shearing for the 25 percent by weight Sm slurry is presented in Figure 5.2.2 in terms of change in shear rate with number of bob revolutions. As was stated previously, the sample was sheared for 3000 revolutions of the bob at a constant shear stress of about 1100 dynes/cm². Both the initial thixotropic behavior and subsequent rheopexy are evident from this figure. Observation of the slurry samples after completion of the tests revealed no visual evidence of phase separation of the Sm and FU-75. Upon discovering the rheopectic behavior of these concentrated Sm slurries without surface active agent, an investigation was made of the amount of FC-75 liquid which evaporated from the slurry during the experiment. The results showed
that a change in slurry concentration from 25.0 to 25.2 percent could be expected during the time period of the experiment. Such a small change cannot account for the increase in apparent viscosity with time. Therefore, the phenomenon of rheopexy is a real characteristic of Sm slurries without additives. The initial yield point and thixotropic behavior of these slurries is probably due to the break-up of flocculated particles, and the subsequent rheopectic behavior to the orientation of anisometric Sm particles upon additional shearing. The complexity of the flow behavior of Sm slurries without surface active agent renders impossible the extrapolation of flow data obtained from experiments in the coaxial cylinder viscometer to flow behavior through tubes and orifi. Therefore, future experiments will be confined to investigating flow through capillary tubes. ### 5.2.2 Apparatus for Capillary Viscometry Studies Capillary viscometry will be employed to extend the rheological investigation of Sm slurries to higher shear rates and greater solids concentration. Because Sm slurries are non-Newtonian fluids, a range of shear stresses must be used. This will be accomplished by varying the pressure drop across the capillary. The viscometer that will be used is being constructed at the present time. It is reported 5.2.2 to be convenient, absolute and accurate and is capable of covering a wide range of shear stress in a single determination. The apparatus is shown schematically in Figure 5.2.3. A column of mercury forces the sample through the capillary tube. Measurement of the height of the mercury column as a function of time yields both the pressure drop and flow rate. The relation between the shear stress $\mathcal T$ and the shear rate $f(\mathcal T)$ for this instrument is given by: $$\frac{f(T)}{T} = -\frac{m}{B} \cdot 1 + \frac{1}{9.212 \text{ m}^2} \cdot \frac{dm}{dt}$$ (5.5) 5.2.2 Maron, S., J. Krieger and A. Sisko. J. Appl. Phys. 25: 971 (1954) - 60 - Page determined to be Unclassified Reviewed Chief, RDD, WHS IAW EO 13526, Section 3.5 Uate: 12 6 APR 2013 where: $m = \frac{d \log h}{dt}$ h = height of mercury column t = time B = constant. # 5.2.3 Densities of &m Slurries In order to permit calculation of the weight penalty involved in slurry systems as compared to dry powder stores, density measurements of Sm in FC-75 for various solids concentration have been made at 20.0°C. From this data the weight of biological material per unit volume can be calculated as a function of solids concentration. The slurries were prepared by weighing the ingredients on an analytical balance and then mixing thoroughly with a perforated plate stirrer which was described in the previous quarterly report. The end of a pipette was inserted well below the surface of the slurry, and the pipette was filled by applying suction through the top. When full, the pipette was scaled at both ends and weighed. The densities obtained are recorded in Table 5.2.1. TABLE 5.2.1 DENSITY OF Sm SLURRIES | Weight
percent of Sm | Density at 20.0°C (gm/cm ³) | |-------------------------|---| | 0 | 1.77 at 25°C | | 16.7 | 1.66 | | 20.0 | 1.62 | | 25.0 | 1.58 | #### 6. BOUNDARY LAYER STUDIES Growth of the boundary layer on the disseminating store is of considerable interest in this program, because the performance of the disseminator may be substantially affected by the local flow conditions at the point of release of the agent. A knowledge of the boundary layer growth is useful in (a) selecting a suitable location for the discharge of the disseminating store, and (b) correlating the results of experiments in a wind tunnel with the performance of a full-size store under flight conditions. In Section 6.1 below, calculations of boundary layer growth on an air-craft store are presented. In Section 6.2, calculations of boundary layer growth in the wind tunnel are given. This information is considered important in interpreting the results of the wind tunnel deagglomeration studies discussed in Section 7. ## 6.1 Boundary Layer on an Aircraft Store The boundary layer thickness on an NACA series 65A store of fineness ratio 8.0 was calculated for a Mach number of 0.9 at sea level with air temperature of 80°F. The length selected for these illustrative calculations was 1.7 ft. Two methods were used, the first assumes the boundary layer is similar to that formed over a flat plate in one-dimensional incompressible flow with zero streamwise pressure gradient. For this case, the thickness of the boundary layer is given by the following relations: $$\delta_{\rm L} = \frac{4.64 \, \text{m}}{\text{Re}_{\rm m}} - 1 \quad \text{for laminar flow} \tag{6.1}$$ end $$\delta_{t} = \frac{.376x}{(Re_{\perp})^{1/5}} - 2 \text{ for turbulent flow}$$ (6.2) where: x = distance measure along store surface in flow direction $Re_{x} = \frac{Vx}{V} = Reynolds' \text{ number based on } x.$ As the boundary layer develops from the stagnation point, it changes from laminar to turbulent at some location x, depending on the stream turbulence, stream Mach number and the surface condition. The point of transition was determined by using a critical Reynolds' number of 8000 according to Reference 1. For this Reynolds' number, transition occurs at approximately 0.01 in. from the stagnation point; thus, for purposes of calculation the laminar regime was neglected. The boundary layer thickness, using only Equation 6.2 above, is shown in Fig. 6.1.1 as a function of distance along the store axis. Equation 6.2 does not represent the actual situation mear the stagmation point and for this reason the curve starts at x = .20 ft. The boundary layer separates from the body at some point beyond the maximum body thickness. Location of the separation point can be estimated by examining surface pressure distribution data for the store. Such data was not available for this store, however, and the separation point was estimated by examining the pressure distribution data for prolate spheroids as given in Reference 2. By this method we find that the boundary layer should separate ^{1.} Heaslet, M. and Nitzberg, G., The Calculation of Drag for Airfoil Sections and Bodies of Reduction at Subcritical Speeds, NACA RM A7806, 1947. ^{2.} Cole, R. I., Pressure Distributions on Bodies of Revolution at Subscnic and Transonic Speeds, NACA RM L52D30, 1952. from the body at between 80 and 90 percent of the axial chord. By drawing the separated stream lines parallel to the store axis, the size of the turbulent wake can be approximated. Actually, the wake would converge slightly, because the static pressure in the wake is less than the free stream static pressure. The boundary layer is drawn to scale on the store shown in Fig. 6.1.2 for comparison of the relative sizes of the boundary layer thickness and the store. Effects of pylon boundary layer and sircraft wing down wash are neglected, because it is assumed that the boundary layer developing on the under side of the wing and on the pylon will not be thick enough to affect the store boundary layer and also that the store will be mounted shead of the wing down wash field. The second method used to calculate the boundary layer thickness includes the compressibility and 3-dimensional effects that occur in the actual situation. The method was presented by Englert in Reference 3 as an extension of an earlier work by Truckenbrodt in Reference 4. In applying this method it was necessary to start with the pressure-distribution data and deduce the local Mach number and sonic velocity along the surface by assuming isentropic flow. Pressure distribution data were again taken from Reference 2. The thickness of the fully turbulent boundary layer is given by: ^{3.} Englert, G. W., Estimation of Compressible Boundary Layer Growth over Insulated Surfaces with Pressure Gradient, NACA TN 4022, 1957. ^{4.} Truckenbrodt, E., A Method of Quadrature for Calculation of the Laminar and Turbulent Boundary Layer in Case of Plane and Rotationally Symmetrical Flow, NACA TM 1379, 1955. 8.0 Page determined to be Unclassified Reviewed Chief, RDD, WHS IAW EO 13526, Section 3.5 Uate: 2 6 APR 2013 $$\delta_{t} = \frac{T^{2}}{7} \left\{ \frac{\eta^{6/7}}{\left(\frac{a_{e}}{a_{o}}\right)^{\left(\frac{+1}{-1}\right)}} M_{e}^{3} \right\}$$ $$(6.3)$$ where: $$7 = \frac{.0076}{\left(\frac{a_{e}}{a_{o}}\right)^{5/21}} \left(\frac{c}{a_{o}}\right)^{1/6} \int_{0}^{x} M_{e}^{10/3} r^{7/6} \left(\frac{a_{e}}{a_{o}}\right)^{\frac{3}{2}-1} dx \qquad (6.4)$$ and: a = local free stream sonic velocity a = sonic velocity at stagnation \mathcal{V}_{o} = kinematic viscosity at stagnation x = distance along flow direction r = body radius at x Ma = local free stream Mach number 7 = ratic of specific heats of air = 1.41 The results of our calculations from Equation 6.3 are also shown in Fig. 6.1.1. A comparison of the boundary layer thickness estimations from Fig. 6.1.1 shows that the 3-dimensional compressible boundary layer (Equation 6.3) is thinner for x/L < 0.565, because the flow area normal to the surface of the body of revolution increases as the square of the distance, whereas, the flow area increases directly with the distance above a flat plate. The rapid growth of the compressible boundary layer for x/L > 0.565 is due to the adverse pressure gradient and the onset of boundary layer separation which, according to the compressible theory, occurs at some position beyond x/L > .75. Velocity distribution within the boundary layer is shown in Fig. 6.1.3. This distribution was calculated from Prandtl's empirical equation: $$\frac{\mathbf{u}}{\mathbf{u_s}} = \frac{(y)}{6} \tag{6.5}$$ In the following section, this velocity distribution is compared with that existing in the wind tunnel. # 6.2 Boundary Layer in Wind Tunnel Boundary thickness predictions based on Equations 6.1 and 6.3 were also made for the high-velocity wind tunnel used in our deagglom-eration studies. Agreement with
measurement for this case should be good, due to the negligible compressibility effects associated with parallel flow along the tunnel walls. Results of the calculations are shown in Fig. 6.2.1 for the various tunnel Mach numbers used in our studies. Location of the agent ejector is shown on the abcissis; notice that ejection occurs well within the turbulent flow regime. The transition to turbulent flow occurs approximately at the location shown for each of the three Mach numbers. These transition locations were obtained by assuming a transition Reynolds' number of 5 x 10⁵. Transition to turbulent flow may occur earlier, but not later than the locations shown, because of the moderately large free-stream turbulence in our tunnel. ľ FIG. 6.1.3 VELOCITY PROFILE IN TURBULENT BOUNDARY LAYER Page determined to be Unclassified Reviewed Chief, RDD, WHS IAW EO 13526, Section 3.5 Date: 2 6 APR 2013 A comparison between the boundary layer velocities occurring in the tunnel and on the agent store for a tunnel Mach number of 0.8 at the point of ejection is shown in Fig. 6.2.2. Agent ejection is assumed to occur from the surface at one half the axial chord (x = 8.5 ft.) in this example. Both boundary layers are turbulent, but the store boundary layer is approximately 10 times thicker, due to the greater distance that the air has traveled at the ejection point. The effect of the different Mach numbers (0.8 in tunnel, 0.9 for store) is small. Fig. 6.2.2 indicates that the velocities are quite similar in the two cases at distances of 0.02 to 0.04 ft. from the surface. This region is of considerable interest, since it has been found that the finely-divided material can be injected approximately this distance. It is believed that the results shown on Fig. 6.2.2 indicate that the deagglomeration effects measured in the wind tunnel will be slightly conservative since the velocity gradient in the region is essentially zero, while there is a modest velocity gradient indicated for the actual flight case. #### 7. DISSEMINATION AND DEAGGLOMERATION STUDIES 1 I Studies on the dissemination of \$m simulant in the high-subsonic velocity wind tunnel were initiated during this reporting period. A series of high speed motion pictures were taken of the serosolization process within the tunnel and samples of \$m\$ were obtained with the high velocity sampling system. ### 7.1 Motion Picture Study of Sm Dissemination Visual observations of the aerodynamic break-up process during the dissemination of Sm have been accomplished by photographing the area of injection inside the wind tunnel at 3000 frames per second. The photographic equipment employed in this work consisted of an Enstman High Speed Camera (No. 3) and an Edgerton, Germeshausen, and Grier Inc. lighting system. The latter has a speed of 1.5 μ sec., which was fast enough to stop agglomerates larger than 0.1 mm in these pictures. Three factors were investigated in this study: (1) bulk density, (2) tunnel Mach number, and (3) moisture content. Samples from two separate batches of Sm, "A"* and "B"**, were used in this work. The material was injected into the wind tunnel with a piston-type device 7.1.1 at an average velocity of 4 meters/sec. The samples were prepared in three different bulk densities: 0.33, 0.43, and 0.49 gm/cc. At the low density, the material was in its loose form while at the higher ^{*} Shipment GBL A-3416691 ^{**} Run 81-8m-342 ^{7.1.1} General Mills Report No. 2161, Second Quarterly Progress Report on "Dissemination of Solid and Liquid EW Agents" (Unclassified Title) Feb. 13, 1961, p. 36 (Confidential). **の一般の一般の一般の一般を持ちない。 これできません はっていいいい** I FIGURE 7.1.1 DISSEMINATION OF Sm "A" WITH BULK DENSITY 0.33 gm/cc IN MACH 0.50 AIR STREAM - 74 - FIGURE 7.1.1 CONTINUED - 75 - Page determined to be Unclassified Reviewed Chief, RDD, WHS IAW EQ 13526, Section 3.5 Uate: 2 6 APR 2013 densities it was compacted into cylindrical slugs, 0.63 cm dia., by using a low friction piston device. Since compaction studies show that it is necessary to form compressed slugs in stepwise manner to assure a uniform density throughout, (see Section 3), seven steps were used and each segment was compressed to a length-to-diameter ratio of 0.3. Each of the density groups was photographed at tunnel Mach numbers 0.50, 0.65, and 0.80. The Sm moisture contents were determined by the Flosdorf-Webster vacuum oven method. Approximately 2 gm of Sm was filled in a bottle which had a known tare weight. The sample was placed in an oven maintained at 50°C, at an absolute pressure of about 100 microns of mercury. After 22 hours it was weighed again. The reduction in weight of Sm divided by its original weight gave the moisture content which for Sm "A" was 4.0 percent and Sm "B" 1.0 percent. From the standpoint of dissemination, an Sm moisture content of 4 percent is considered to be high. This motion picture study shows that such material can form strong agglomerates which are difficult to break up completely in a high velocity air stream. Thus, the importance of controlling moisture content is demonstrated in this work. Figures 7.1.1, 7.1.2 and 7.1.3 show injections of loose Sm "A". Much of the material appears to be aerosolized within a short time, 3 frames or 0.001 sec. However, there are some relatively large agglomerates, approximately 0.50 mm in size, which seem to be unaffected by the air stream. These are shown in Figure 7.1.1, in the upper part of Frame 10. In comparison, Figures 7.1.4 and 7.1.5 show that Sm "B" has few of these hard agglomerates and the material seems to break up faster. This FIGURE 7.1.2 DISSEMINATION OF Sm "A" WITH BULK DENSITY 0.33 gm/cd IN MACH 0.65 AIR STREAM - 77 - Page determined to be Unclassified Reviewed Chief, RDD, WHS IAW EO 13526, Section 3.5 Uate: 2 6 APR 2013 FIGURE 7.1.2 CONTINUED - 78 - Page determined to be Unclassified Reviewed Chief, RDD, WHS IAW EO 13526, Section 3.5 Uate: 2 6 APR 2013 0.33 gm/cg in Mach 0.80 Air Stream to the total and a FROURE 7.1.3 CONTINUEL - 80 - PIGURE 7.1.4 DISSEMINATION OF Sm. "B" WITH BULK DENSITY 0.33 gm/cc IN MACH 0.5 AIR STREAM - 81 - Page determined to be Unclassified Reviewed Chief, RDD, WHS IAW EO 13526, Section 3.5 Uate: 2 6 APR 2013 FIGURE 7.1.4 CONTINUED PIGURE 7.1.5 DISSEMINATION OF Sm "B" WITH BULK DENSITY 0.33 gm/cc IN MACH 0.80 AIR STREAM FIGURE 7.1.5 CONTINUED - 84 - Page determined to be Unclassified Reviewed Chief, RDD, WHS IAW EO 13526, Section 3.5 Date: 2 6 APR 2013 difference is ettributed to their moisture contents given above. がから、 日本の 10 mm 1 Figures 7.1.6, 7.1.7 and 7.1.8 show the dissemination of Sm "A", compacted to a density 0.43 gm/cc. Note that the end of the slug is sheared or eroded very rapidly as it enters the air stream. Aerodynamic break-up appears to be as satisfactory as that of the lower density. The results at density 0.49 gm/cc, Figures 7.1.9, 7.1.10 and 7.1.11, can be compared with the previous group to show the significant effect of compaction of relatively moist Sm beyond the density 0.43 gm/cc. At Mach number 0.50, the Sm slug protrudes into the stream an estimated 0.5 cm before being broken by serodynamic drag forces. This is beyond the boundary layer which was calculated to be 0.33 cm thick at the point of injection. As the compacted pieces flow farther into the stream they break up rapidly. For example, note the change between Frames 4 and 6 in Figure 7.1.9. With increasing Mach number the slugs are broken up closer to the tunnel wall. In this group of pictures there appears to be a significant number of particles formed in the 0.1 to 0.5 mm size range which do not show signs of completely deagglomerating. Thus, it seems likely that this combination of compaction density and moisture content may be beyond the limits for satisfactory dissemination with a simple injection-type apparatus such as was employed in this study. Generally, the maximum particle injection distance from the wall into the tunnel decreases with increasing Mach number. For example, in Figure 7.1.1 (M = 0.5), the material flows out as far as 2.0 cm before passing out of view, while in Figure 7.1.3 (M = 0.8), it flows to 1.2 cm. It FIGURE 7.1.6 DISSEMINATION OF Sm "A" WITH BULK DENSITY 0.43 gm/cc IN MACH 0.50 AIR STREAM FIGURE 7.1.6 CONTINUED - 87 - Page determined to be Unclassified Reviewed Chief, RDD, WHS IAW EO 13526, Section 3.5 Uate: 2 6 APR 2013 FIGURE 7.1.7 DISSEMINATION OF Sm "A" WITH BULK DENSITY 0.43 gm/cc IN MACH 0.65 AIR STREAM FIGURE 7.1.7 CONTINUED Page determined to be Unclassified Reviewed Chief, RDD, WHS IAW EO 13526, Section 3.5 Uate: 2 6 APR 2013 是一种的一种的一种,是一种,是一种 DISSEMINATION OF Sm "A" WITH BULK DENSITY 0.43 gm/cc in mach 0.80 air stream FIGURE 7.1.8 - 90 - Page determined to be Unclassified Reviewed Chief, RDD, WHS IAW EO 13526, Section 3.5 Date: 2 6 APR 2013 FIGURE 7.1.8 CONTINUED - 91 - Page determined to be Unclassified Reviewed Chief, RDD, WHS IAW EO 13526, Section 3.5 Date: [2 6 APR 2013 7.1.9 DISSEMINATION OF Sm "A" WITH SULK DENSITY 0.49 gra/cc IN MACH 0.50 AIR STREAM FIGURE 7.1.9 CONTINUED - 93 - Page
determined to be Unclassified Reviewed Chief, RDD, WHS IAW EO 13526, Section 3.5 Date: PIQURE 7.1.10 DISSEMINATION OF Sm "A" WITH BULK DENSITY 0.49 gm/cc in Mach 0.65 air Stheam 1 1 FIGURE 7.1.10: CONTINUED Page determined to be Unclassified Reviewed Chief, RDD, WHS IAW EO 13525, Section 3.5 Uate: 2 6 APR 2013 **经营业企业,是各种的企业企业,但是不是一种的企业,是是一种的企业,是是一种的企业,是一种的企业,是一种的企业,是一种的企业的企业,也是一种的企业的企业,但是一种企业的企业,但是一种企业的企业,是一种企业的企业,但是一种企业的企业的企业,但是一种企业的企业,但是一种企业的企业的企业,但是一种企业的企业的企业,但是一种企业的企业的企业,但是一种企业的企业的企业,但是一种企业的企业,但是一种企业的企业的企业,但是一种企业的企业的企业,但是一种企业的企业,但是一种企业的企业,但是一种企业的企业,但是一种企业的企业,但是一种企业的企业,但是一种企业的企业,但是一种企业的企业,但是一种企业的企业,但是一种企业的企业,但是一种企业的企业,但是一种企业的企业,但是一种企业的企业,但是一种企业的企业,但是一种企业** FIGURE 7.1.11 DISSEMINATION OF Sm "A" WITH BULK DENGITY 0.49 gm/cc IN MACE 0.80 AIR STREAM 是一个时间,我们就是一个时间,我们就是一个时间,我们就是一个时间,我们就是一个时间,我们的时间,我们也是一个时间,我们们是一个时间,我们们也是一个时间,我们们的 一个时间,我们就是一个时间,我们就是一个时间,我们就是一个时间,我们就是一个时间,我们就是一个时间,我们就是一个时间,我们们就是一个时间,我们们就是一个时间,我们 I 1 I FIGURE 7.1.11 CONTINUED Page determined to be Unclassified Reviewed Chief, RDD, WHS IAW EO 13526, Section 3.5 Uate: 2 6 APR 2013 In careful study of these pictures, possibly two of the chief mechanisms by which deagglomeration occurs in the wind tunnel may be observed. First, it appears that unequal pressure distributions around large slugs during acceleration cause them to break up suddenly into a large number of finer particles. Figure 7.1.9, Frames 4 and 5, shows this phenomenon, where a piece of slug was shattered in the period of 0.0003 sec. It should be noted that this mechanism does not appear to fully deagglomerate the material in this case. Numerous particles, on the order of 0.2 mm. were produced in the process. Secondly, the mechanism of fluid shear, in connection with fluid boundary layers around agglomerates and clusters, is considered to be very important in dissemination. It causes erosion of small particles from the material during the acceleration process. For example, Figure 7.1.1, Frame 16, shows clearly the formation of clouds of fine particles around clusters of Sm. A large percentage of the break up of Sm into its basic particle size appears to occur in this manner. Due to the high acceleration of these fine particles, the cloud is oriented in the downstresm direction. The motion of 0.5 mm agglomerates has been traced in these motion pictures to determine their acceleration in the air stream. For the flow condition Mach number 0.5, calculations show that they undergo accelerations greater than 3000 times gravity. Evaluations of their pressure and friction drag coefficients indicate that the former is approximately 50 times greater than the latter. Thus, acceleration is primarily caused by non-uniform pressure distributions around the agglemerates. It has not been determined whether fluid shear in turbulent or laminar boundary layers is most effective in designomeration; however, it is a well known fact that the shear stress at a boundary is higher in the former case. ### 7.2 Sm Dissemination - Particle Size Distribution I 1 I É Experiments have been conducted to determine the degree of deagglomeration of Sm simulant in the wind tunnel. In these studies Sm "B" was injected at an approximate velocity of 4 m/sec into an air stream maintained at Mach number 0.50. The resulting serosol was then sampled at a distance of 67 cm downstream of the injector with the high velocity sampling probe and 76 mm Millipore filters. The degree of deagglomeration was determined by studying the material under a microscope. Segments of the samples were prepared for the observations by inverting them on slides and dissolving the filter material with one drop of acetone. By sealing a cover slip over the sample, good particle contrast could be maintained for long periods of time. The analysis was made by first scanning the prepared slides to determine the type of particles that were present. Agglomerates could be distinguished from basic particles so that a qualitative understanding could be obtained of the degree of deagglomeration. The second step was to determine the particle size distribution (by number) of the sample. These tests indicate that dry (one percent moisture) Sm with a density of about 0.33 gm/cc can be disseminated to produce an aerosol in the wind tunnel which is fully deagglomerated. The samples were found to consist of basic Sm particles. On a number basis, where the statistical Martix's diameter* was measured with a Filar micrometer eyepiece, approximately 90 percent of the particles were smaller than 5μ . This work will be continued with both loose and compacted Sm at sir stream velocities, Mach 0.50 and 0.80. The results should provide a good understanding of the degree of deagglomeration of dry Sm in a high velocity airstream. 1 į ^{*} Length of a line intercepted by the particle profile boundary which approximately bisects the area of the profile. The measurement is taken in the same direction for all particles. Æ Ĭ. F Our Third Quarterly Progress Report included a study of the influence of effective filling density on aerodynamic drag of solid agent external stores. The filling density is a product of the mean bulk density of a finely-divided solid agent and the fraction of the total volume enclosed by the skin of the store which is occupied by the agent. This study pointed out that drag is minimized if the external store has a large filling density. From a structural point of view, it is desirable to have the store as small as possible. It can be concluded from this that it is desirable to use the most dense agent that can be produced. Our work on the physical characteristics of powders shows that the higher powder densities require increasing higher compaction forces. Pre-liminary work by Fort Detrick auggests that these high compaction forces may greatly reduce the viability of agent. To explore the effects produced on a simulant, a series of compaction-viability tests using Sm have been initiated. Figure 8.1 shows the compaction device which was fabricated for the compaction-viability tests. It is composed of five separate parts: the base, cylinder, closure plug, piston, and funnel. This particular design was chosen to allow for accurate density measurement, case of applying a load, case of handling, and provisions for keeping the agent under test sufficiently cool. Cooling was considered since viability may be greatly affected by the heat generated during compression. FIGURE 8.1 COMPACTION DEVICE, DIBASSEMBLED Page determined to be Unclassified Reviewed Chief, RDD, WHS IAW EO 13526, Section 3.5 Uate: 2 6 APR 2013 In all tests made to date the compaction device and Sm was brought to approximately 4°C prior to conducting the tests at room temperature. This has appeared to be adequate cooling for the low loading rate used in these tests. The procedure is to insert the closure plug into the cylinder and in turn insert these into the base. The Sm is poured into the cylinder in small lots. Tests in this type apparatus have shown that density decreases with distance from the piston. To keep the density variation acceptably small the pellet was formed in layers, each about 1/3 the 250 mg total. The piston was then inserted and slowly loaded with the mass capable of producing the desired density. The piston was removed and the procedure repeated until the full 250 mg pellet was formed. I I I The length of the pellet was measured with an optical height gage so that the volume and subsequently the density of the test pellet could be determined. The resulting pellet was next weighed and placed into a dispersing solution from which viability assessments were conducted. compaction tests, using loading rates as low as 16 grams per second and piston loads up to approximately 16 atmospheres, gave Sm densities up to 0.65 grams per cubic centimeter. Preliminary results suggest that the effect of compaction on viability is not excessive. Eased on the procedure described above and a content sample, it appears that the viability recovery of Sm may be as high as 80 percent. Further tests are currently being made to firmly establish this compaction-viability relationship. ### 9. SYSTEMS STUDY MARKAR BELANDER MARKARIA EN MARKARA CARARA EN MARKARA MA and To obtain a numerical evaluation of target area coverage as a runction of the various parameters (flow rate, serosol diffusion, height of release, etc.), the appropriate equations were programmed on a Bendix G-15 digital computer. The model used was similar to the one used by North American Aviation, Inc., but with a different expression for the lethal dosage as a function of down wind distance. The model used in this report is the one due to K. Calder with the additional modification of a variable decay rate. The symbols used are defined in Table I below. We assume that the plane is flying crosswind and disseminates a line source. The line source strength is given by: $$q = \frac{f \cdot C \cdot B}{V} \tag{9.1}$$ Assuming that this line source is effectively infinite in length, we obtain the ground level lethal dosage via the equation: $$D_{L} = (2/\pi)^{1/2} \left[q/\sigma u(x/x_{1})^{\beta} \right] \exp \left[-h^{2}/2\sigma^{2} (x/x_{1})^{2\beta} \right]. \quad (9.2)$$ $$\exp \left[-\operatorname{decay factor.} \right]$$ We have a variable decay rate and the "decay factor" is assumed to be: $$\frac{.05x}{u} \text{ for } 0^{<} x/u \le 0.5,$$ $$.01 \left(\frac{x}{u} - 0.5\right) +
.025 \text{ for } 0.5 < x/u \le 6.0,$$ $$.001 \left(\frac{x}{u} - 6.0\right) + .025 + .055 \text{ for } 6.0 < x/u. \tag{9.3}$$ ^{1.} North American Aviation, Inc., Report No. NA-59-632, "Airborne Biological Warfage at Low Altitudes", Vol. II, 16 June 1959, pp. 183 and following. ### TABLE 9.1 | Symbol | Definition | <u>Units</u> | Numerical Value Used
for this Report | |----------------|--|--------------|--| | P | Probability of infection | Unitless | | | 1050 | No. of organisms required
to infect 50% of the people | Organisms | | | q | Source strength | Org/ft. | Variable | | k | Agent decay rate | \$/nr. | 5 for 0 ≠ t ≤ .5 hr.
1 for 0.5 < t ≤ 6 hrs.
0.1 for 6 hrs. < t | | × | Down wind cloud travel | Miles | Variable | | u | Wind speed | Miles/hr. | Variable . | | h | Height of release | Feet | 100 | | σ | Weather parameter | Feet | .66 | | β | Weather parameter | Unitless | 3.8 | | ×1 | Height for which of and B | Miles | .0622 | | ъ | Breathing rate of man | Ft.3/hr. | 25.43 | | Í | Dissemination flow rate | Ft.3/min. | Variable | | C | Agent concentration | org/ft.3 | | | E | Dissemination efficiency | Unitless | 0.20 | | v | Delivery speed | Ft./min. | 48,000 (=545 mph = Mach .76) | | D _L | Ground level dosage of
Lethal agent | Org-hr./ft.3 | | 3: 3: T 2 6 APR 2013 That is, the decay rate is five percent per hour during the first half hour, one percent per hour for the next five and one half hours, and one tenth of one percent thereafter. It should be noted that time has been integrated out of the expression for $\mathbf{D}_{\mathbf{L}}$ and hence $\mathbf{D}_{\mathbf{r}_{\mathbf{L}}}$ is in terms of viable organisms present per cubic foot for one hour. If we multiply D by the total intake of air of one person for one hour we obtain the dosage, d, for that person. Knowing d, we obtain the probability of infection, P, from the equation $$P = 1 - 2^{-d/10}50.$$ (9.4) In the exponent d/ID₅₀ the quantity C/ID₅₀ occurs and this will be treated as a variable. Curves of P versus down wind distance, x, are plotted and shown in Fig. 9.1. The parameters are C/ID₅₀, wind speed u, and flow rate f. These curves can be related to a specific agent through the parameter C/ID₅₀, assuming we have used the proper decay rate. Since these curves are not restricted to a particular agent they can be thought of as universal curves. It is of considerable interest to compare these curves with the experimental results contained in the North American Report, pp. 103-117, especially Figure 0-6, p. 115. We observe that all data has a characteristic shape which rises sharply in the beginning, starts to drop, rises again and then falls into an exponential decay. This structure is precisely that exhibited in our computed curves. This agreement with experimental data gives considerable credence to the theory of a variable decay rate. であるとのでは、「日本のでは Since the theory of a variable dacay rate seems even more plausable now, a mathematical model is being developed which will account for this. This model enteils particle size as one of its parameters. - 109 -][### 10. WORK ON LIQUID AGENT DISSEMINATING STORE I 1 As reported in our Third Quarterly Progress Report, General Mills, Inc. was asked to consider the potential store-carrying capabilities of the AN/UBD-5 Drone, before selecting the final configuration of the research prototype liquid agent disseminating store. In order to thoroughly investigate this potential application, General Mills, Inc. issued subcontracts to Fairchild Aircraft and Missiles Division and North American Aviation, Inc. for studies on this subject. The work statements for each of these studies were included in our Third Quarterly Progress Report. Both of these studies have been completed. The final report prepared by Fairchild is included as Appendix A. The final report preparedby North American Aviation is included as Appendix B. The reader is referred to these appendices for the detailed findings of these studies. Conclusions are summarized in Section 11. ### 11. SUDMARY AND CONCLUSIONS I 1 ï During this reporting period, the Phase II studies were continued. This phase includes research related to solid agent dissemination and the design and fabrication of a research model of a liquid agent store, intended for future field experiments. Experimental studies of the effect of exposure to heated air streams on the viability of Sm aerosols have been made. Results for an exposure time of 1.7 seconds show a very substantial loss of viability at elevated temperatures. For example, exposure at 125°C causes 99 percent loss of viability. This work indicates that mixing of the serosol with the jet plume of a carrier aircraft should be avoided. (Section 2) The study of frictional forces between various powders and various surfaces has been continued. With the use of a piston-cylinder apparatus, measurements were made of the product $C_1\mu$, where C_1 is the constant of proportionality between forces acting perpendicular to and parallel to the direction of the applied force, and μ is the coefficient of friction. Measurements were also made of μ directly, using a tilting-table method. It was possible to calculate C_1 from these measurements. The average value for C_1 was found to be 0.484 for tale and 0.414 for Sm. A study was made of average bulk density of a column of compressed powder, as a function of column length, for various compressive stresses. Measurements were made on both tale and Sm. An empirical formula was found to fit the experimental data quite well. (Section 3) A theoretical analysis of the force required to lift an imbedded disk from a bed of dilatent material was carried out, under the assumption that attractive forces between particles are negligible. The removal force was found to depend on the density γ and the shear angle ϕ of the particulate material, the force being proportional to the factor: $\frac{\gamma_{\sin \phi}}{1-\sin \phi}$. The agreement between theory and experiment was found to be good for glass beads of 100 and 200 micron diameter. (Section 4) The viscosity of egg slurries W.E.S. #1, #2, #3 and #4 was redetermined, using a new shipment of frozen samples. The thermal conductivity of these slurries also was determined at intervals of 1.5°C in the temperature range from 0 to 32°C. The thermal conductivity values varied from 78 to 97 percent of the value for water. The rheological properties of am slurries without a surface active agent were investigated at 20°C. The slurries exhibited initial tnixotropy (apparent viscosity decreases with shear) followed by rheopectic behavior (increase in apparent viscosity with shear). A slurry containing 28.6 percent by weight am was too thick to handle in the coaxial cylinder viscometer. A capillary viscometer is being constructed to extend the rheological investigation to greater solids concentration and higher shear rates. (Section 5) Boundary layer studies showed that the boundary layer of an aircraft external store is approximately 10 times thicker than the boundary layer in our wind tunnel. However, with a reduced wind tunnel ### CONTIDENTAL Mach number, the deagghomeration measured in the wind tunnel is conservative, since the velocity gradient at the apparent injection distance (0.02 to 0.04 ft.) is greater for the agent store than for the wind tunnel, while the velocity at this distance is almost identical. (Section 6) Studies on the dissemination of Sm simulant in the high-velocity wind tunnel were conducted during this reporting period. A series of high-speed motion pictures, taken of the serosolization process within the tunnel, showed the serodynamic breakup characteristics of Sm at various bulk densities, moisture contents, and tunnel Mach numbers. The degree of deagglomeration is
strongly dependent on the moisture content of Sm; values in the range of 1-2 percent by weight appear to be most satisfactory for dissemination. The two mechanisms which seem to be primarily responsible for deagglomeration are non-uniform pressure distributions around agglomerates and fluid shear stresses at their boundaries. Samples were taken of Sm aerosols produced in the tunnel at an air stream velocity, Mach number 0.5. For the case of dry Sm with density 0.33 gm/cc, it was found that the sample consisted of basic Sm particles; i.e., full deagglomeration was obtained. (Section 7) Experiments were conducted to determine the effect of compaction on the viability of dry Sm. Early results indicate that the viability recovery for samples subjected to approximately 16 atmospheres pressure was in the order of 80 percent. (Section 8) - 113 - COMPINENTIAL DECLASSIFIED IN FULL Authority: EO 13526 Chief, Records & Declass Div, WHS Date: 2 6 APR 2013 A numerical evaluation of the target area coverage was conducted as a function of the various parameters, including the factor of a variable decay rate. The result of this study is a family of infection probability curves, with a characteristic shape which has been demonstrated in actual field experiments. This agreement with experimental results adds considerable strength to the variable decay rate theory. (Section 9) The USD-5 is capable of carrying external stores at three locations with very small penalties in structure weight. It was determined that the near optimum store for universal use on manned aircraft is substantially larger than the near optimum store for the USD-5. In addition, the manned aircraft store can reasonably include an independent power source. On this basis, it was decided that the most useful unit for this program is one designed for a manned aircraft. (Section 10) 是一种,我们是一种,我们们是一种,我们们的,我们们们的,我们们们的,我们们们的,我们们们们们们们的,我们们们们们的,我们们的,我们们们的时候,我们们们们们们们们的 DECLASSIFIED IN FULL Authority: EO 13526 Chief, Records & David Chief, Records & Declass Div, WHS Date: 2 6 APR 2013 - 114 - ### APPENDIX A STUDY OF COMPATIBILITY OF EXTERNAL WING-MOUNTED BY STORES WITH THE AN/USD-5 (XE-1) DROME Conducted Under General Mills, Inc. Purchase Order No. MD-82550 1 I Ву Fairchild Stratos Corporation Hagarstown, Maryland DECLASSIFIED IN FULL Authority: EO 13526 Chief, Records & Declass Div, WHS Date: 2 6 APR 2013 CONTRACTOR ## COMPANDATION # FAIRCHILD STRATOS CORPORATION | SUBJECT_ | STUDY OF COMPATIBILITY OF EXTERNAL WING- | | | | | |---|--|-------------------|----------|--|--| | | MOUNTED BW STO | | | | | | *************************************** | DRONE | | | | | | • | <u> </u> | Lan Poll | | | | | | PREPARED BY A | TO THE DOST OF THE PROPERTY | REPORT NO. R 30 | 31-000 | | | | CHECKED BY Z | R. H. PUTHAM | MODEL M-3 | 61 | | | | APPROVED BY | O. A. SERIES | ′ СОРУ НО | | | | | APPROVED BY | HORTON TAB | NO. OF PAGES | | | | | PPROVED BY | | DATE May 26, 1961 | | | | | | | | | | | | REVISIONS | 1 | | | | | | NO 401011 - 1 - 1 - 1 | 1 | | | | | | REVISION DATE | PAGES | AFFECTED | APPROVED | 1\$- 800- 69B | CONTH | EWITAL | 1 | | | | EPORT NO. R 36 | TOP TATRONICO ENGINE & AIRPLANE CORPORATI | | |----------------|--|---| | M-361 | R. N. Rothenberger R. H. Putnam | E. E. Morton | | Stu
BW - BW | ty of Compatibility of External Wing-Moun
Stores with the AN/USD-5 (XE-1) Drone | ted DATE _ May 26, 196 | | | octes with the AN/ USD-6 (XE-1) Drone | | | | TARE OF COMME | | | | TABLE OF CONTENTS | | | SECTION | TITLE | PAGE | | 1. | SUMMARY | 1-1 | | 2. | INTRODUCTION | 2-1 | | 3. | SYMBOLS | 3-1 | | 4. | FACTUAL DATA | 4-1 | | 4, 1. | PARAMETRIC ANALYSIS OF TANK SI
LOCATION PHASE I | ZE AND | | 4.1.1 | . PERFORMANCE ANALYSIS | 4-1 | | 4.1.2 | | 4-1 | | 4.1.3 | · | 4-14 | | 4.1.4. | THERMODYNAMICS | 4-16 | | 4.1.5. | | 4-18 | | 4.2. | STIDY OF SELECTED CONTRACT | 4-20 | | • | STUDY OF SELECTED CONFIGURATION DESIGN | | | | FLUTTER STABILITY | 4-27 | | | LATERAL STABILITY | 4-30 | | | STRESS | 4-31 | | 4, 2, 5, | WEIGHTS | 4-49 | | 4. 2. 6. | SEA-LEVEL MISSION | 4-56 | | | | 4-58 | | 5. | REFERENCES | 5-1 | | 6. | APPENDIX | 6-1 | | | · | DECLASSIFIED IN FULL
Authority: EO 13526 | Chief, Records & Declass Div, WHS Date: 2 6 APR 2013 POINT INFINIT I I I I Ţ, I | REPORT NO. | R 361-000 FAIROHILD Alroraft and Missiles Div. | i Lvara i Lvar 1-1 | |------------|---|-----------------------| | W2361 | R. N. Rothenberger R. H. Putnam | APPROVED BY B. Morton | | ₹
\$ | Study of Compatibility of External Wing-Mounted | DATE May 26, 1961 | | SUBJECT:- | BW Stores with the AN/USD-5 (XE-1) Drone | REVISED | | l | | | SECTION 1. SUMMARY. I I To assess the compatibility of external wing-mounted BW stores with the AN/USD-5 (XE-1) drone, the initial investigation considered the installation of tanks 18, 20 and 22 inches in diameter located at wing butt lines 37, 74 and 85. Parametric analysis of these tank sizes and locations at 0.7 Mach number indicated the most desirable configuration to be a 22-inch diameter tank located at wing butt line 85. Further investigation based on the selected configuration indicated a sea level radius of action capability of 111 nautical miles with a BW agent capacity of 1240 pounds. > **DECLASSIFIED IN FULL** Authority: EO 13526 Chief, Records & Declass Dlv, WHS Date: 2 6 APR 2013 TOMPUENTAL OF THE PARTY NAMED IN THE | REPORT NO. R 361-000 PAIROHILD Aircraft and Missiles Div. | | |---|---------------------------| | STATE OF TAIRCHILD ENGINE & ALMPLANE COMMONATION | PAGES PAGE 2-1 | | M-361 R. N. Rothenberger R. H. Putnam | E. E. Morton | | Study of Compatibility of External Wing-Mounted SUBJECT:- BW Stores with the AN/USD-5 (KE-1) Drone | DATE May 26, 1961 REVISED | | | | SECTION 2. INTRODUCTION. This report presents the results of a study to investigate the compatibility of external wing-mounted BW stores with the AN/USD-5 (XE-1) Drone. Under a contract with the United States Army Chemical Corps, General Mills undertook the development of external stores for line-source dissemination of solid and liquid BW agents from low flying manned and unmanned aircraft. In order that the resulting stores be adaptable to a large number of delivery vehicles, investigation of the potential capabilities of the AN/USD-5 (XE-1) drone for carrying external stores was requested. The primary mission is line-source dissemination of BW agents from a low altitude drone. Basic assumptions are: - Modification of drone components other than the wing structure will be minimized. - Weight allowance will be made for installation of functional BW control package. - c. Normal surveillance equipment will be installed. - d. Installation of a wind determination system will be considered. - e. Drone will be returned and recovered. - f. Launch will be made at the highest practical gross weight consistent with the operating limitations of the AN/USD-5 (XE-1) drone. - g. Agent dissemination will be made at minimum feasible altitude and 0.7 Mach number. - h. External BW tanks will be ejected after dissemination run. - i. Minimum radius of operation will be 300 nautical miles. - A C.E.P. of three nautical miles for a 60-minute flight duration will be acceptable. Basic design data of the BW external tanks as compiled by North American Aviation Company is contained in Appendix I of this report. The following additional data was furnished by General Mills - - -: - a. Density of payload: 8.33 pounds per gallon. - b. Rate of payload dissemination: 9 gal/min/tank. - c. Tank
drag (isolated store drag coefficient); 0.08 - d. Electrical power requirements of tanks and control: 28 volts dc. 2 ams. 3 -800-23A ## May be the state of o | | R361-000 FAIRCHILD Airpraft and Wiscitos Div. | PAGES I PAGE 9.9 | |-----------|---|---------------------------| | М-36 | R. N. Rothenberger R. H. Putnam | AFFROYED BY E. Morton | | SUBJECT:- | Study of Compatibility of External Wing-Mounted
BW Stores with the AN/USD-5 (XE-1) Drone | DATE May 26, 1961 REVISED | ### SECTION 2. (Continued) ### e. Tank size and weight: | Tank Size
(diameter) | Tank Wi. (lb) | Agent Wt. (lb) | Tank Cap
(gal) | Total Wt.
(2 tanks) | |-------------------------|---------------|----------------|-------------------|------------------------| | 18 in. | 440 | 233 | 28 | 1346 | | 20 in. | 520 | 491 | 69 | 2022 | | 22 in. | 600 | 783 | 94 | 2766 | | * 22 in. | 460 | 1241 | 149 | 3401 | * Alternate tank weight and capacity supplied after completion of preliminary investigation. The study was conducted in two phases. The objective of Phase I was the determination of the best tank configuration considering tank size and location on the wing. Tanks of 18, 20 and 22-inch diameter located at wing butt lines 37, 74 and 85 were investigated. The effect of each configuration on drone structure, stability and control, and performance was analyzed to establish the most desirable tank configuration. The objective of Phase II was a study of the selected configuration considering the design, flutter stability, lateral stability, load analysis and stress checks, weight, center of gravity and moment of inertia. A sea-level dissemination mission was calculated utilizing the selected BW tank configuration as well as a summary of design load factors for the tanks. DECLASSIFIED IN FULL Authority: EO 13526 Chief, Records & Declass Div, WHS Date: 2 6 APR 2013 I 1 | REPORT NO. R 361-000 PAIRCHILD Aircraft and Missiles Div. PASES PAGE 3 M-301 R. N. Rothenberger R. H. Putnam APPRIES PAGE 3 | -1 | |--|----------| | | | | | | | Study of Compatibility of External Wing-Mounted DATE May 26, 190 | 1 | | SUBJECT:- BW Stores with the AN/USD-5 (XE-1) Drone REVISED | <u>·</u> | | SECTION 3. SYMBOLS. | | | B. L butt line | | | C_D drag coefficient = $\frac{D}{q}$ | | | C. E. P circular error probability | | | C_L lift coefficient = $\frac{L}{q}$ | | | Q center line | | | C_{m} pitching moment = $\frac{M}{q S1}$ | | | C _n yawing moment = N | | | $C_{n_{\beta}}$, static directional stability parameter = $\frac{d C_{n}}{d c_{n}}$ | | | C_y side force coefficient = $\frac{Y}{qS}$ | | | C _x axial force coefficient | | | D drag | | | F.S fuselage station | | | G. W gross weight | | | I moment of inertia | | | x roll moment of inertia | | | Iy pitching moment of inertia | | | I ₂ yawing moment of inertia | | | I mass moment of inertia of the drone about a centroidal axis parallel to the x datum axis | | | L.E leading edge | | | M Mach number 0, 7 | | | MAC mean aerodynamic chord | | | Mi/lb nautical mile per pound of fuel DECLASSIFIED IN FULL Authority: EO 13526 | | | MRP military rated power Chief, Records & Declass Div, WHS | | | CONFIDENTIAL CONFIDENTIAL | | 1 I I 1 1 I I 1 | | - GUNT IDENTIAL | | |--------------------|---|-----------------------| | REPORT NO. | R 361-000 FAIRCHILD Alroyaft and Missiles DI | PAGES 1 PAGE 3-2 | | BE-TY POOR | 1 R. N. Rothenberger R. H. Putnam | E. E. Morton | | | Study of Compatibility of External Wing-Mounted | DATE MRY 28, 1961 | | SUBJECT:- | BW Stores with the AN/USD-5 (XE-1) Drone | KEVISED | | SECTIO | ON 3. (Continued) | | | My | fuselage moment about horizontal axis | | | M | wing moment about vertical axis | | | N. Mi | nautical mile | | | NRP | normal rated power | | | P _{Xo} zo | product of inertia in the xz plane with re x and z axes | espect to centroidal | | R/A | radius of action | | | R/C | rate of climb | | | s | area in square feet | | | T. E. | trailing edge | | | T.T.E. | wing torque about trailing edge | | | V | airspeed | | | V _z | vertical shear | | | Wt. | · · · . weight | , | | 4 | incremental change | | | a, | angle of attack in degrees | · | | · 4 B | airplane angle of attack | | | ß | angle of sideship - degrees | | | 8 , | control surface deflection angle | | | ग् | indicates a coefficient based on maximum | cross-sectional area. | | ģ | roll angle - degrees | | | ø = p | rolling velocity of drone about longituding | ll axis - rad/sec | | & | angle of roll | | | # | rolling velocity | | | . | rolling acceleration | | | v : r | yawing velocity of drone about vertical ax | is - rad/sec | | | - CONTIDENTIAL | | 8-800-23A 1 1 1 1 | PORT NO.R 361 | | IROHILD Aire | raft and Miss | ilog Div. | | PAGE 3-3 | |----------------|-----------|------------------|--------------------|-------------|---------|------------------| | NZ361 | R. N. R | othenberger | R. H. Putnar | n / | E R M | orton | | | | | ernal Wing-Mou | | ATE MAY | 26 <u>, 1961</u> | | MECT: BW | Stores Wi | th the AN/USD | -5 (XE-1) Drone | · | EVISED | | | SECTION 3. | (Continu | red) | | | | | | a | | illeron | | | | | | c.g. | | enter of gravit | y | | | | | 1 | | length' | - | | | | | n _x | 1 | ongitudinal load | d factor; positiv | e - forward | | | | n
Ny | 1 | ateral load fac | tor; positive - r | ight | | | | o
Z | | normal load fac | tor; positive - v | p | | | | 1 | | lynamic pressu | re = $1/2 p^{V^2}$ | | ; | - | | ŗ | 1 | rudder | | | | | | ar : | | ving | | | | | | K . | 1 | ongitudinal cen | ter of gravity | * | | | | 7 | 1 | ateral center o | f gravity | | | | | K | | ertical center | of gravity | | • | • | · | | | | | | | | • | | | | 1 | | | | |---|--------------|--|-----------------------------| | | REPORT NO. | R 361-000 FAIROHILD Alroraft and Missiles Div. | PAGES PAGE 4-1 | | | M-361 | R. N. Rothenberger R. H. Putnam | APPROVED BY
E. E. Morton | | - | SUBJECT!- | ment of | DATE May 25, 1961 | | | 3000 EG 1- | 2" See on a rest rife Wild Ond-n (WE-1) DLOHA | REVISED | SECTION 4. (東京の) | 100mm 100m I 1 **经生态的**自己的是有经历也可能是完全的意义,但是是是这种的一种,也是是是是一种的一种,也是是是一种的一种的,也是是一种的,他们就是是一种的一种,也是一种的一种,也是一种的一种,也是一种的一种,也是一种的一种,也是一种的一种,也是一种的一种的一种,也是一种的一种,也是一种的一种,也是一种的一种,也是一种的一种,也是一种的一种的一种,也是一种的一种的一种,也是一种的一种,也是一种的一种,也是一种的一种,也是一种的一种,也是一种的一种,也是一种的一种的一种,也是一种的一种的一种,也是一种的一种,也是一种的一种,也是一种的一种,也是一种的一种,也是一种的一种,也是一种的一种,也是一种的一种,也是一种的一种的一种,也是一种的一种的一种,也是一种的一种的一种,也是一种的一种的一种,也是一种的一种的一种,也是一种的一种的一种,也是一种的一种,也是一种的一种,也是一种的一种,也是一种的一种的一种,也是一种的一种,也是一种的一种的一种的一种,也是一种的一种的一种,也是一种的一种的一种,也是一种的一种的一种的一种,也是一种的一种的一种,也是一种的一种,也是一种的一种,也是一种的一种,也是一种的一种的一种,也是一种的一种的一种,也是一种的一种的一种,也是一种的一种的一种,也是一种的一种,也是一种的一种,也是一种的一种,也是一种的一种,也是一种的一种的一种,也是一种的一种,也是一种的一种,也是一种的一种,也是一种的一种,也是一种的一种,也是一种的一种,也是一种的一种,也是一种,也是一种的一种,也是一种的一种,也是一种,也是一种,也是一种,也是一种 1 FACTUAL DATA - 4.1 PARAMETRIC ANALYSIS OF TANK SIZE AND LOCATION PHASE I - 4.1.1 PERFORMANCE ANALYSIS The performance analysis consisted of a study of the effects of tank size, tank location and cruise altitude on radius of action (Phase I) and the calculation of the mission performance for one selected tank size, weight and wing location (Phase II). ### 4.1.1.1 Basic Performance Data The thrust required for the drone without tanks installed is based on the lift and drag coefficients obtained from wind tunnel tests of a AN/USD-5 (XE-1) model. The thrust requirements with tanks installed are based on the addition of an incremental drag coefficient due to the tank installation to the basic AN/USD-5 (XE-1) data. The drag breakdown is given in Table I and a plot of incremental drag coefficient versus tank capacity is presented in Figure 4-1. The tank capacities used in this figure and later figures are the agent capacities specified by General Mills for the Phase I parametric study. The drag coefficients are based primarily on data supplied by North American Aviation and General Mills. The drag coefficients are applicable up to M = 0.7. The thrust available is the same as that used for the AN/USD-5 (XE-1). When calculating cruise performance, the present normal rated power (NRP) of the engine was exceeded when necessary to meet the M=0.7 speed requirement; however, military rated power (MRP) was not exceeded. Specific range data are presented in Figures 4-2 thru 4-5. CONFIDENTIAL 3 - 800-23 A | TABLE I. INCRE | | ANK DIAMETE | | LICIENTS | SUBJECT: | M-36 | REPORT NO. | |---|------------------|------------------|------------------|--|---|--------------|---| | ITEM | 18 Inch | 20 Inch | 22 Inch | COMMENTS | ;
1 | _ | 1 | | Usable tank capacity per tank | 28 gal | 59 gal | 94 gal | Specified by General | 78 € | İ | R | | Tank frontal area | 1.762 sq ft | 2. 182 sq ft | 2.640 sq ft | 1 1 6 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | Stor | 70; | 361-000 | | C _D for isolated tank | 0.05 | 0.05 | 0.05 | NAA data per TWX dated | Com | Z | ١. | | C _D for fins | 0.01 | 0.01 | 0.01 | March 31, 1961
NAA data supplied by
General Mills | patibil
th the | Rothe | 2 X X X X X X X X X X X X X X X X X X X | | C _D for pylons | 0.0103
0.0703 | 0.0103
0.0703 | 0.0103
0.0703 | General Mills allowed
0.08 per TWX dated
March 31, 1961 | Study of Compatibility of External Wing-Mou
BW Stores with the AN/USD-5 (XE-1) Drone | Rothenberger | AILD AIFE | | ${^{ extsf{C}}_{ extsf{D}}}_{ extsf{W}}$ for ram air turbine
drag | 0.1587 | 0.1281 | 0. 1039 | $C_{D} = 0.013$ based on area | 5 (XI | 20 | ING & A | | Total A C per tank | 0.2290 | 0.1984 | 0.1762 | of 21.5 sq ft | Wing | H | 100 | | Total 4 C _D for cruise out (Based on wing area) | 0.00402 | 0.00432 | 0.00463 | Two tanks | Wing-Mounted -1) Drone | Putnan | COMPORA | | $^{\Delta}$ C $_{ m D}$ for dissemination nozzles | 0.00070 | 0.00070 | 0.00070 | Based on drag of two faired cylinders per tank, 42 in long, 1 in diam. | ted | | TIAN DIV. | | Fotal A $C_{ m D}$ for dissemination (Based on wing area) | 0.00472 | 0.00502 | 0.00533 | and inclined 60° to
vertical | REVISED | Though. | PAGES | | Jsable tank capacity, two
tanks | 56 gal | 118 gal | 188 gal | | 26, 1961 | Morton | 3 PAGE 4. | DECLASSIFIED IN FULL Authority: EO 13526 Chief, Records & Declass Div, WHS Date: 2 6 APR 2013 ت | REPORT NO. R 361-000 FAIRCHILD AIRCRAFT and Mismiles E | TAGES TAGE 8-0 | |---|----------------------------| | M-361 R. N. Rothenberger R. H. Putnam | APPROVED BY E. E. Morton | | Study of Compatibility of External Wing-Mounted SUBJECT:- BW Stores with the AN/USD-5 (XE-1) Drope | DATE MAY 26, 1961 REVISED | | | | SECTION 4. 1 FACTUAL DATA (Continued) ### 4.1.1.2 Missions The missions investigated were all radius-of-action missions and consisted, basically, of a boosted launch, cruise out to dissemination point, disseminate liquid agent, drop tanks and pylons 25 nautical miles after dissemination, and return to base for recovery. The rules for the missions are given below: #### 4.1.1.2.1 Sea Level Cruise Mission - a. Fuel allowance (67 lbs) is provided for two minutes operation at NRP for pre-launch check out. - b. Launch and cruise out at Mach number = 0.7 at sea level. - c. Disseminate agent at Mach number = 0.7 at sea level. Agent is disseminated from both tanks simultaneously at rate of 9 gal/min/tank. - d. Range does not include dissemination distance. - e. Drop tanks and pylons after 25 nautical miles of cruise back. - f. Cruise back at Mach number = 0.7. - g. Recover. - h. No reserve fuel. ### 4.1.1.2.2 Altitude Cruise Mission - a. Fuel allowance (67 lb) is provided for two minutes operation at NRP for pre-launch check out. - b. Launch and climb to 30,000 ft with MRP at best rate of climb. - c. Cruise at 30,000 ft and Mach number = 0.7 until weight decreases to point where service ceiling $(R/C \approx 100 \text{ ft/min at NRP})$ is 35,000 ft. - d. Climb to 35,000 ft with MRP. - e. Cruise to dissemination point at Mach number = 0.7. - f. Descend to dissemination area. No credit is taken for range in descent. - CONTIDENTIAL 4 - 800-23 A DECLASSIFIED IN FULL Authority: EO 13526 Chief, Records & Declass Div, WHS Date: 2 6 APR 2013 | REPORT NO. R 3G1-000 PAIROHILD Aircraft and Missiles Div. | | |---|--------------------------| | M-361 R. N. Rothenberger R. H. Putnam | APPROVED BY E. E. Morton | | Study of Compatibility of External Wing-Mounted | DATE May 26, 1961 | | SUBJECT:- BW Stores with the AN/USD-5 (XE-1) Drone | REVISED | | | | ### SECTION 4. ### FACTUAL DATA (Continued) - g. Disseminate agent at Mach number = 0.7 at sea level. Agent is disseminated from both tanks simultaneously at rate of 9 gal/min/tank. - h. Range does not include dissemination distance. - i. Climb to 35,000 ft with MRP. Drop tanks and pylons after 25 nautical miles range in climb. - j. Cruise back at 35,000 ft and Mach number = 0.7 to recovery area. - k. No credit is taken for range during descent to recovery area. - 1. No reserve fuel. Typical mission profiles and the results of the radius-ofaction calculations are given in Figures 4-6 thru 4-9. Weight and fuel data are given in the Gross Weight Summary. NOTE: Gross Weight Summary has been submitted by Weights Section. It should be noted that none of the tank installations considered were able to meet the minimum desired radius of action of 300 nautical miles at sea level. CONFIDENTIAL 8 - 800-23A **发展的,但是一种工程,可以推荐的,但是是一种,是是一种的人,是是一种的人,是是一种的人,是是一种的人,是是一种的人,也是是一种人,也是是一种人,也是是一种人,也是是一种人,也是一种** Report No. Page No. 4-5 R 361-000 711 H Haldalit; -1. 4 CD vs Tank Capacity DECLASSIFIED IN FULL Authority: EO 13526 Chief, Records & Declass Div, WHS Date: 2 6 APR 2013 4-2. Nautical Mi/lb of Fuel vs Tank Cap. (Sea Level) CAMEINENTIAL Report No. R 361-000 Page No. 4-5 I I I I 1 I ľ I THE L T T T 1 ACD vs Tank Capacity 4-2. Nautical Mi/lb of Fuel vs Tank Cap. (Sea Level) ## COMPIDENTIAL I 4-3. Nautical Mi/lb of Fuel vs Tank Cap. (30,000 ft. Cruise) ### CONFIDENTIAL Report No. R 361-000 Page No. 4-8 4-4. Nautical Mi/lb of Fuel vs Tank Cap. (35,000 ft. Cruise) # CONFIDENTIAL Report No. R 361-000 Page No. 4-9 THE REPORT OF THE PARTY 是是是是是这种,我们就是这种,我们就是不是是一个人,我们就是不是一个人,我们就是一个人,我们就是一个人,我们也会会说,我们也会会说,我们也会会说,我们也会会说, 第一个人,我们就是一个人,我们就是一个人,我们就是一个人,我们就是一个人,我们就是一个人,我们就是一个人,我们也是一个人,我们也是一个人,我们也是一个人,我们也是 I 4-5. Nautical Mi/lb of Fuel vs Gross Weight (35,000 ft. Cruise) ## CONFIDENTIAL MISSION LEVEL MISSION 4-6. Typical Mission Profile (Sea Level) DECLASSIFIED IN FULL Authority: EO 13526 Chief, Records & Declass Div, WHS Date: 2 6 APR 2013 Report No. R 361-000 Page No. 4-11 11: 4-7. Radius of Action vs Tank Capacity (Sea. Ĩ I CONFIDENTIAL I I I. I I ### TYPICAL MISSION PROFILE ALTITUDE CRUISE - SEA LEVEL DUSSOMMATION 4-8. Typical Mission Profile (Altitude Cruise) CONFIDENTIAL Report No. R 361-000 Page No. 4-13 . 11 大學及二年等 我然后而是你不過 \$P. 医肾化物 \$P. 好到 4-9. Radius of Action vs Tank Capacity (Cruise Out at Altitude) CONFIDENTIAL | REPORT NO. R 361-000 PAIRCHILD Airoraft and Missiles Div. | PAGES PAGE 4-14 | |---|-------------------| | M-361 R. N. Rothenberger R. H. Putnam | E, E, Morton | | Study of Compatibility of External Wing-Mounted | DATE May 26, 1961 | | SUBJECT:- BW Stores with the AN/USD-5 (XE-1) Drone | REVISED | #### SECTION 4. FACTUAL DATA (Continued) #### STATIC STABILITY AND CONTROL CHARACTERISTICS 4.1.2 A brief static stability and control analysis was made of the various tank configurations in order to determine their feasibillity. The study was made without consideration of zeroelastic effects. The results are given below. #### 4.1.2.1 Longitudinal The addition of tanks with horizontal fins is estimated to produce a forward shift of the neutral point as much as 3.5% MAC (see Figure 4-10). The greatest effect is obtained with the large tanks in the outboard location. The shift in neutral point will be handled by restricting the aft c.g. limit. This solution is expected to introduce problems in c.g. control. It is recommended that horizontal fins be used to minimize the adverse effect of tanks on longitudinal stability. No control problems are indicated based on static considerations. #### 4.1.2.2 Lateral-Directional. The static directional stability parameter, C_{n_g} significantly when tanks without vertical fins are added to the basic AN/USD-5 (XE-1) configuration. See Figure 4-10. Further study may indicate the desirability of adding vertical fins to the tanks. Lateral control is sufficient to handle unsymmetrical dissemination of agent. #### 4.1.2.3 General. The changes to the AN/USD-5 (XE-1) stability and control characteristics become greater as the tanks are moved outboard on the wing; however, the results of this static analysis has not indicated any insurmountable difficulties. The results of a brief lateral dynamic-stability study indicate a potential problem at V = 200 kts. The lateral oscillation is damped, but large rudder to sideslip angle ratios are required to 4 - 800-23 A 次子文学在1000年,1000年,1000年,1000年,1000年,1000年,1000年,1000年,1000年,1000年,1000年,1000年,1000年,1000年,1000年,1000年 Report No. Page No. 4-15 R 361-000 4-10. Static Longitudinal and Directional Stability Authority FO 1975 CONFIDENTIAL | REFORT NO. 1 | 361-000 PAIRCHILD AIR | raft and Mississ Div. | | |--------------|-------------------------------|-----------------------|--------------| | | R. N. Rothenberger | R. H. Putnam | E. E. Morton | | | Study of Compatibility of Ext | DATE May 26, 1981 | | | SUBJECT:- | BW Stores with the AN/USD | REVISED | | | | | | į | SECTION 4. FACTUAL DATA (Continued) #### 4. 1. 3 STRESS ### 4, 1, 3, 1 Structural Modifications Required to Fuselage For all stores at all locations on the wing the fuselage bending moments and shears are higher than the design values for the AN/USD-5 (XE-1). The area affected is between Station 207.5 and 259.5. Therefore, there will be some changes in the longerons and shear panels in this area. For the 1383 lb store at either B. L. 85 or B. L. 74, the tie bar in the fuselage frame at the front spar (Station 207.5) must be increased in size. For all stores there may be a slight change in the fasteners where the rear spar fitting attaches to the fuselage lower longeron. #### 4, 1, 3, 2 Structural Modifications Required to Wing For all stores at all locations on the wing it is necessary to increase the strength of the root rib at the joint where the leading edge portion attaches to the main portion of the rib. For all stores at B. L. 37 the existing fuel bulkhead must be converted into a structural rib. For all stores at B. L. 74 or B. L. 85 a structural rib must be added. For the 1011 lb store at B. L. 74 an 0.02 inch doubler must be added to the wing skin for 10
inches inboard of the rib. For the 1383 lb store at B. L. 74 an 0.03 inch doubler must be added to wing skin for 10 inches inboard of the rib. For the 1011 lb store at B. L. 85 an 0.02 inch doubler must be added to the wing skin for 10 inches inboard of the rib. For the 1383 lb store at B. L. 85 the wing skin gage must be increased from the existing 0.06 inch thickness to 0.07 (an 0.01 inch increase) from B. L. 85 to the root rib, and an 0.03 inch doubler must be added for 10 inches inboard of B. L. 85. For all stores at B. L. 25 and B. L. 74 the front spar fitting would have to be changed slightly to add more material. CONFIDENTIAL 4 - 800-23A | REPORT NO. | R 361-000 PAIROHILD Aire | raft and Missies Div. | PAGES. PAGE 4-17 | |------------|-------------------------------|-----------------------|--------------------------| | M-381 | R. N. Rothenberger | R. H. Putnam | APPROVED BY E. E. Morton | | | Study of Compatibility of Ext | ernal Wing- Mounted | DATE MRV 26, 1961 | | SUBJECT:- | BW Stores with the AN/USD- | 5 (XE-1) Drone | REVISED | | SECTIO | ON 4. PACITITAT DAM | A (Continued) | | 4.1.3.2 Structural Modifications Required to Wing (Continued) > For all stores at B. L. 74 or B. L. 85, a swept pylon is required because the store c.g. is so far forward in relation to the wing section. A swept pylon is far more complex than a straight pylon from both a design and a manufacturing standpoint and, due to the fact that the c.g. is so far forward in relation to the wing section, the greatly increased moments and torques require much heavier structure in the pylon. > > OUNT DENTAL 3 -800-23 A 1 | | | • | |-----------|---|---------------------| | | R361-000 FAIROHILD Aircraft and Missiles Div. | FAUCO FAUE. 4-10. | | M-361 | R. N. Rothenberger R. H. Putnam | APPROVED BY Morton | | | Study of Compatibility of External Wing-Mounted | DATE May 28, 1961 | | SUBJECT:- | BW Stores with the AN/USD-5 (XE-1) Drone | REVISED | | | | | SECTION 4. 1 FACTUAL DATA (Continued) - 4.1.4 THERMODYNAMICS. - 4.1.4.1 J-60 Turbojet Engine Estimated Jet Wake Diagram An estimated jet wake diagram on the J-60 turbojet engine, based on sea-level condition and M=0.7, was obtained by crossplotting Pratt and Whitney data for other conditions and is, in the opinion of Thermodynamics, conservative for the purpose since it does not account for the effects of the secondary airflow in the cooling ejector. See Figure 4-11. The cooling ejector is part of the basic design of the AN/USD-5 (XE-1) in all its versions. DECLASSIFIED IN FULL Authority: EO 13526 Chief, Records & Declass Div, WHS Date: 2 6 APR 2013 CONFIDENTIAL DECLASSIFIED IN FULL Authority: EO 13526 Chief, Records & Declass Div, WHS 2 6 APR 2013 Report No. R 361-000 Page No. 4-19 4-11. 3-63 Turnojet Engine Estimated Jet Wake Diagram **3est Available Copy** REPORT NO. R 361-000 FAIRCHILD Alforaft and Missies Div. PAGES PAGE 4-20 PAGE 4-20 PAGES PAGE 4-20 SECTION 4. FACTUAL DATA (Continued) 4.1.5 WEIGHTS. ### 4.1.5.1 Basis for Analysis. - a. Maximum launch gross weight shall be 10,800 lb. - b. Basic drone shall be the operational AN/USD-5 (XE-1). - c. Agent tanks shall be full (98%) for launch. - d. Fuel tanks shall be partially full for launch. - e. C. G. of all external stores shall be at F. S. 228.0 (20.9% MAC). Refer to Figure 4-14. - f. Maximum diameter of tank at B. L. 37.0 shall be 22 inches. - g. Pylon constant for all tank diameters at a given butt line location. # 4. 1. 5.2 Applied Changes to Operational AN/USD-5 (XE-1) Drone. Refer to Figure 4-13. - a. Add circuitry in guidance and electrical systems for stores functions. - b. Revise wing fuel plumbing to provide for partially filled wing fuel tanks at launch. - c. Add beef-up in skin panels and longerons (F. S. 187-270) of fuselage to sustain increase in bending loads. - d. Wing structural beef-up is required and varies with agent tank size and location as follows: - (1) All conditions require changes to root rib joints and the rear spar fitting. - (2) For all stores at B. L. 37 the existing fuel bulkhead must be converter into a structural rib. - (3) For all stores at B. L. 74 a structural rib and local skin doublers must be added. - (4) For the 18 and 20-inch diameter tanks at B. L. 85 a structural rib and local skin doublers must be added. CONFIDENTIAL 3-800-23A AUNT DE MITAL | REPORT NO. | R 361-000 PAIROHILD Almoraft and Missies Div. | | PAGE 4-21 | |------------|---|--------------|-----------| | M-361 | R. N. Rothenberger R. H. Putnam | E. E. M | orton | | | | DATE : May-2 | 61961 | | | | REVISED | | | 450 | | | | SECTION 4. FACTUAL DATA (Continued) - Applied Changes to Operational AN/USD-5 (XE-1) Drone. 4.1.5.2 (Refer to Figure 4-13) (Continued) - (5) For the 20-inch diameter tank at B. L. 85 a structural rib will be added and the wing skin increased by 0.01 inches from the root rib to B. L. 85 rib. - (6) Design of the structural ribs at B. L. 37, 74 and 85 is based on the 22-inch diameter tank. - A straight pylon can be used from B. L. 37 thru B. L. 60.5 and the weight is estimated as a constant. For all stores outboard of B. L. 60.5 a canted pylon is required because the tank center of gravity is projected forward of the wing by the sweep back of the wing leading edge and the pylon becomes far more complex and heavier. Figure 4-12 shows the influence of the pylon weight on the expendable stores configuration and Figure 4-13 reflects the penality to the empty drone weight. - Summary Build Up of Drone Gross Weight. 4.1.5.3 Refer to Table II for the summary build up of drone gross weight from the AN/USD-5 (XE-1) weight empty to the M-361 launch gross weight. 4.1.5.4 Longitudinal Balance. > Longitudinal balance of the nine recovery gross weight conditions falls between 22 and 23% MAC and appears to be satisfactory. Until such time that c.g. envelopes can be established, it is assumed that the longitudinal centers of gravity for flight can be satisfied by selective placement and programming of the drone fuel. 4.1.5.5 Alignment Angle. > The effect of agent tank size, agent tank location and placement of drone fuel on the booster alignment angle has not been included in this phase of study. Once a configuration has been selected, booster alignment will be resolved. > > GUNFILENTAL 9-800-23A | | CONFIDEN | TAL | | |-------------|----------|----------|------| | PAIROHILD A | | Missiles | DIV. | | | | | | | REPORT NO. R361-000 | HOHIL | D Alro | raft an | | ilee Di | v. | PAGES | PAGE | 4-22 | |--|---------|-----------|----------|------------|----------|-------|-------|----------|---------| | M-361 PAPPAR N. | Dotherh | WILD ENG! | CHECKED | Ant conros | AAIun | ARDR | E. Mo | | | | | | | | | | | | | | | Study of Comp | | | | | | 1 | · May | | 201 | | SUBJECT:- BW Stores wit | | | | | | | 3ED | | | | • | LABTE | n. GR | CSS AT | ight s | UMMAR | (X | | | | | | | .L. 37.0 | | | L. 74.0 | | | L. 85. | 0 | | Basic AN/USD-5 (XE-1) | | 4495 | 4495 | 4495 | 4495 | 4495 | 4495 | 4495 | 449 | | (Calc.) Per/Nov/11/60 | | | | | | | | | | | M-361 Modifications (Est | : | 65 | 65 | 93 | 93 | 93 | 101 | 101 | 12 | | Electrical System | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | • | | Guidance System | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | | Fuel System | 10 | 10 | 10 | 10 | 10 | 10 | 10 | 10
10 | | | Fuselage Structure | 10 | 10 | 10
40 | 10
68 | 10
68 | 10 | 76 | 78 | | | Wing Structure | | 40 | | | | | | | | | Total Empty Weight | 4560 | 4560 | 4560 | 4588 | 4588 | 4588 | 4596 | 4596 | 1 | | Fuel - Unusable | 50 | 50 | 50 | 50 | 50 | 50 | 50 | 50 | L | | Total Recovery G.W. | 4610 | 4610 | 4610 | 4638 | 4638 | 4638 | 4646 | 4846 | 466 | | Fuel - Usable | 3531 | 2855 | 2111 | 3481 | 2805 | 2061 | 3445 | 2769 | 200 | | Stores - Expendable | 1428 | 2102 | 2846 | 1448 | 2124 | 2868 | 1476 | 2152 | _ | | Pylon (2) | 80 | 80 | 80 | 102 | 102 | 102 | 130 | 130 | 13 | | Tank (2) | 880 | 1040 | 1200 | 880 | 1040 | 1200 | 880 | 1040 | | | Agent 8.33 lb/Gal | 466 | 982 | 1566 | 466 | 982 | 1566 | 466 | 982 | 156 | | Total Drone G.W. | 9567 | 9587 | 9567 | 9567 | 9567 | 9567 | 9567 | 9567 | 956 | | (less booster) | *** | 1 | "" | | | | | | | | Booster | 1300 | 1300 | 1300 | 1300 | 1300 | 1300 | 1300 | 1300 | 130 | | Total Drone G.W. | 10867 | 10867 | 10867 | 10867 | 10867 | 10867 | 10867 | 10867 | 1086 | | (plus booster) | 1000 | 1000 |] | 10001 | 1000. | 20001 | | | | | Booster Drop Off G.W. | | | | | | | ļ · | | | | (level attitude) | 1 | | Í | | 1 | | 1 | | • | | - Wt Ib | | | | İ | | | 1 | | 950 | | - Ixo (roll) - slug-it2 | ļ | |] | | , | |] |) : | 751 | | $-I_{ZO}$ (yaw) $-slug-st_2^2$ | | | } | ļ. | | | 1 | | 1664 | | - P _{XOZO} - slug-ft ² | ļ |] | | | | | 1 | | - 16 | | Agent Tanks Empty G.W. | | ļ | | ĺ | | | ļ | | | | (level attitude) - Wt lb | 1 | | | 1 | | | } | | 645 | | - Ixo (roll) - slug-ft ² | | } | | | | | 1 | | 346 | | $-1_{\mathbf{Z_0}}(yaw) - slug-tt^2$ | 1 | | | 1 | | | Ì | | 1106 | | $-P_{X_0Z_0} - slug-ft^2$ | 1 | 1 | | İ | ŀ | | 1 | | - 7 | | Tank Dia inches | 18 | 20 | 22 | 18 | 20 | 22 | 18 | 20 | 2: | | Length - inches | 153 | 170 | 187 | 153 | 170 | 187 | 153 | 170 | 18 | | Volume - gai | 105 | 145 | 190 | 105 | 145 | 190 | 105 | 145 | 19 | | (to outside skin contour) | , | } |] | Į | | | | | | | Volume - gal | 28 | 59 | 94 | 28 | 59 | 94 | 28 | 59 | 9 | | (usable) |]. | | | | | | | | | | | } | ı | COM | TUEN | | 1 | ī | | i . | Authority: EO 13526 Chief, Records & Declass Div, WHS Date: 2 8 APR 2013 4-12. External Store Weight vs Butt Line Location DECLASSIFIED IN FULL Authority: EO 13526 Chief, Records & Declass Div, WHS Date: 2 6 APR 2013 FAMILY Weight Live and a AM TOO-5 Drone vs Butt Line Location of Malery H. Taples DECLASSIFIED IN FULL Authority: EO 13526 Chief, Records & Declass Div, WHS Date: 2 6 APR 2013 desit Available Copy Report No. R 361-000 May broth to
Page No. 4-25 4.1. Tour Diameter vs Drone Fuselage Station POPPED BEATING Best Available Co 4-15. Tank Diameter vs Tank Weight DECLASSIFIED IN FULL Authority: EO 13526 Chief, Records & Declass Div, WHS Date: 2 6 APR 2013 Best Available Copy | _ | | | | |---|-------------|--|-------------------| | | REPORT NO. | R 361-000 or resented Engine a singlane Componential | PAGES PAGE 4-27 | | 1 | M-381 | R, N, Rothenberger R, H, Putnam | E. E. Morton | | l | | | DATE May 26, 1961 | | | SUBJECT:~ | The state of s | REVISED | | l | | | | | 1 | SECTIO | N 4. FACTUAL DATA (Continued) | | FACTUAL DATA (Continued) - 4.2 STUDY OF SELECTED CONFIGURATION - PHASE II - 4.2.1 DESIGN - 4.2.1.1 General Arrangement. The general arrangement and overall dimensions of the M-361 modified drone are shown on Figure 4-16. 4, 2, 1, 2 Mobile Launcher Clearances. > The launcher clearances are given in Figure 4-17. The M-361 modified drone is shown in the launch and also the transport positions. Repost Ho. Fr 361-800 # MINISTER SE CONFIDENTIAL -SONFT- Figure 4-16. General Arrangement DECLASSIFIED IN FULL Authority: EO 13526 Chief, Records & Declass Div, WHS Date: 2 6 APR 2013 2 6 APR 2013 Report Ro. R 381-000 # -CONFIDENTIAL CONFIDENTIAL MISSILE IN TRANSPORT POSITION Figure 4-17. Launcher Clearances DECLASSIFIED IN FULL Authority: EO 13526 Chief, Records & Declass Div, WHS Date: 2 6 APR 2013 | REPORT NO. 1 | D 201 000 FAIROHILD Aircraft and Missies Div. | PAGES PAGE 4-30 | |--------------|---|-------------------| | M-361 | R. N. Rothenberger R. H. Putnam | E. E. Morton | | | Study of Compatibility of External Wing-Mounted
BW Stores with the AN/USD-5 (XE-1) Drone | DATE May 28, 1961 | | SECTIO | | | ECTION 4. FACTUAL DATA (Continued) gravity. 4.2.2 FLUTTER STABILITY The addition of concentrated masses to a wing will generally affect the flutter stability of the wing. The effect can be beneficial in some cases, but often it will adversely affect the flutter speed. No flutter analysis of concentrated masses on the AN/USD-5 (XE-1) wing has been accomplished. Because no simplified method exists for estimating the effects of concentrated masses on a delta wing, a formal flutter investigation must be made before the final design is frozen in regard to spanwise and chordwise location of the external stores center of gravity and flexibility of the pylon mounting structure. Since the AN/USD-5 (XE-1) wing is free from flutter without external stores, it is reasonable to assume that a flutter-free design can be achieved with external stores. A parameter study will be The only general rule of thumb available in regard to external stores is that the center of gravity should always be forward of the "effective" torsional axis of the wing. The present design does not violate this rule. required to obtain the correct pylon flexibility consistent with the requirements for location of the external stores center of CONFIDENTIAL I 1 ١. REPORT NO. R 381-000 FAIRCHILD Airpraft and Micelies Div. PAGES PAGE 4-31 WM-381 PREPARED BY CIRCULA ENGINE & AIRPLANE CORPORATION Study of Compatibility of External Wing-Mounted BW Stores with the AN/USD-5 (XE-1) Drone REVISED SECTION 4. FACTUAL DATA (Continued) 4.2.3 LATERAL STABILITY ### 4.2.3.1 Lateral Stability Study The following presents the results of a PACE analog computer study of the lateral stability of the selected configuration, allowing three degrees of freedom. The basic equations of airframe motion are listed below: In the classical dynamic equations for airframe motion all aerodynamic coefficients are assumed constant for any particular condition of Mach number and gross weight and small angle approximations (i.e., $\cos \alpha = 1$, $\sin \alpha = \tan \alpha = \alpha$ (radians) are employed. The two orientation angle computations are: Transfer functions of the lateral autopilot used in the simulation are derived from Reference 5.3 $$\delta_{r} = 1.0$$ $\frac{1}{.05 \text{ S}+1}$ r $\delta_{a} = (1.017 + .61 \text{ S})$ $\frac{1}{.05 \text{ S}+1}$ The steering loop has been omitted from the analysis. It is also noted that no coupling between the lateral and longitudinal modes has been considered. The aerodynamic coefficients are taken from References 5.1 and 5.2. The configuration investigated was the 22 inch wing tank located at B. L. 85. Gross weights of 6500 lb and 9500 lb at speeds of 0.3 MN and 0.7 MN were chosen as the conditions to be investigated. Weight and Moment of Inertia data are supplied by Reference 5.4. CONFIDENTIAL- | 244027 40 | R 361-000 FAIRCHILD Aircraft and Missiles Div. | PAGES PAGE 4-32 | |-----------|---|--------------------| | M-361 | Rothenberger R. H. Putnam | APPROVED BY Morton | | 141-301 | Study of Compatibility of External Wing-Mounted | DATE May 26, 1981 | | SUBJECT:- | BW Stores with the AN/USD-5 (XE-1) Drone | REVISED | SECTION 4. FACTUAL DATA (Continued) 4.2.3.1 Lateral Stability Study (Continued) Step inputs were applied to ϕ , β , p and r individually while the resulting responses were monitored by observing the traces on a brush recorder. The step inputs were as follows: | step input to | magnitude of step | |---------------|-------------------| | φ | + 10° | | ß | + 4° | | p | + .4 rad/sec | | r | +.2 rad/sec | The resulting traces, Figures 4-18 thru 4-33, show that the system investigated is stable in the lateral modes for the conditions considered. DECLASSIFIED IN FULL Authority: EO 13526 Chief, Records & Declass Div, WHS Date: 2 6 APR 2013 CONFIDENTIAL Page No. 4-33 Report No. R 361-000 DECLASSIFIED IN FULL Authority: EO 13526 Chief, Records & Declass DIV, WHS Date: 2 6 APR 2013 4-18. Lateral Stability Study Result Tracing CONFIDENTIAL Best Available Copy Report No. R 361-000 Page No. 4-34 DECLASSIFIED IN FULL Authority: EO 13526 Chief, Records & Declass Div, WHS Date: 2 6 APR 2013 4-19. Lateral Stability Study Result Tracing CANTIDENTIAL Best Available Copy Report No. R 361-000 Page No. 4-35 Report No. R 361-000 Page No. 4-36 DECLASSIFIED IN FULL Authority: EO 13526 Chief, Records & Declass Div, WHS Date: 2 6 APR 2013 4-21. Lateral Stability Study Result Tracing CONFIDENTIAL Report No. R 361-000 Page No. 4-37 DECLASSIFIED IN FULL Authority: EO 13526 Chief, Records & Declass Div, WHS Date: 2 6 APR 2013 4-22. Lateral Stability Study Result Tracing CONFIDENTIAL Best Available Cu, Page No. 4-38 Report No. R 361-000 DECLASSIFIED IN FULL Authority: EO 13526 Chief, Records & Declass Div, WHS Date: 2 6 APR 2013 4-23. Lateral Stability Study Result Tracing Report No. R 361-000 Page No. 4-39 4-24. Lateral Stability Study Result Tracing DECLASSIFIED IN FULL Authority: EO 13526 Chief, Records & Declass Div, WHS Date: 2 6 APR 2013 CONFIDENTIAL Page No. 4-40 Report No. R 361-000 4-25. Lateral Stability Study Result Tracing DECLASSIFIED IN FULL Authority: EO 13526 Chief, Records & Declass Div, WHS Date: CONFIDENTIAL Page No. 4-41 Report No. R 361-000 9500# # Step .3 MM 1 second 4-26. Lateral Stability Study Result Tracing CONFIDENTIA Best Available Copy Report No. R 361-000 4-27. Lateral Stability Study Result Tracing DECLASSIFIED IN FULL Authority: EO 13526 Chief, Records & Declass Div, WHS Date: 2 6 APR 2013 CONFIDENTIAL Report No. R 361-000 Page No. 4-43 **DECLASSIFIED IN FULL** Authority: EO 13526 Chief, Records & Declass Div, WHS TUNY FUE TO BEAL 4-28. Lateral Stability Study Result Tracing Best Available Copy Report No. R 361-000 4-29. Lateral Stability Study Result Tracing DECLASSIFIED IN FULL Authority: EO 13526 Chief, Records & Declass Div, WHS Date: 2 6 APR 2013 Report No. R 361-000 Page No. 4-45 4-30. Lateral Stability Study Result Tracing COMPIDENTIAL Report No. R 361-000 Page No. 4-46 4-31. Lateral Stability Study Result Tracing DECLASSIFIED IN FULL Authority: EO 13526 Chief, Records & Declass Div, WHS
Date: 2 6 APR 2013 Report No. R 361-000 Page No. 4-47 4-32. Lateral Stability Study Result Tracing CONFIDENTIAL Best Available Copy Report No. R 361-000 Page No. 4-48 4-33. Lateral Stability Study Result Tracing DECLASSIFIED IN FULL. Authority: EO 13526 Chief, Records & Declass Div, WHS Date: 2 6 APR 2013 | REPORT NO. | R 361-000 PAIRCHILD AIRCH | raft and Mississ Div. | PAGES PAGE 4-49 | |------------|---|--------------------------------------|---------------------------| | M-361 | R. N. Rothenberger | R. H. Pumam | E. E. Morton | | SUBJECT:- | Study of Compatibility of Ext
BW Stores with the AN/USD- | ernal Wing-Mounted
5 (XE-1) Drone | DATE May 26, 1961 REVISED | SECTION 4. FACTUAL DATA (Continued) 4.2.4 STRESS #### 4.2.4.1 Load Analysis A loads analysis was made of the AN/USD-5 (XE-1) drone with three different stores (673 lb, 1011 lb and 1383 lb) at three different locations (B.L. 37, B.L. 74, and B.L. 85). In each case it was assumed that the top of the store was at W.L. - 19.75. This analysis was done for several loading conditions which appeared to be the most critical for the drone with external stores. Following the loads analysis, stress checks were made on items in the most critically loaded areas to determine what modifications would be required to insure positive margins of safety in all of the structure. #### 4.2.4.2 Loads The curves on Figures 4-34 thru 4-39 show the increases in loads on the wing and fuselage due to the various stores at the various butt lines. The wing moment about the fore and aft axis is not increased as a result of mounting these stores on the wing at any butt line. The wing fore and aft shear is greater than that for which the AN/USD-5 (XE-1) wing was designed, especially when the stores are mounted at one of the outboard locations. However, due to the long chord of the delta wing, this is not an important design consideration. In no case is the wing vertical shear greater than that for which the wing was designed. Wing moments about the vertical axis and wing torque about the trailing edge for stores at B. L. 37 are not greater than those for which the wing was designed. 2 - 800-23A DECLASSIFIED IN FULL Authority: EO 13526 Chief, Records & Declass Div, WHS Date: 2 6 APR 2013 Report No. R 361-000 Page No. 4-50 4-34. Wing Moments about Vertical Axis (Store at B.L. 85) Report No. R 361-000 Page No. 4-51 4-35. Wing Moments about Vertical Axis (Store at B.L. 74) ### TAI NEW THE DECLASSIFIED IN FULL Authority: EO 13526 Chief, Records & Declass Div, WHS Date: 26 APR 2013 Page No. 4-52 Report No. R 361-000 | R 361 | -000 | | | | | | , | | | | | 1 | | | 11211 | | ្រះ | انزار | -
 | | | मन | |-------|----------|-----------|-----------|----------------------|----------------|---|----------------|------|--|---|-----------|-------------|----------|----------------|----------------|--------------|-----------------------|--|----------|-----------------|--|--| | | M | 361 | | | | | ii: | ##: | | 闦 | | Ŧ | | | L;11 | | | | 2/ | 2/ | 67 | | | | | | | | Ser | 200 | 2/ | :/ | 11 | 7/5 | 1 | انزن | tra | ?C/ | 411 | | | | E | 111.
11. | | | | | 1.111 |]H | 1241 | | | 111 | | | 111 | 1172 | | 1.11 | 12: | 1.1 | 4 | 11:1 | | 4;; | :[::] | ų; | | 团 | | | | | Fill II | FILH | | 1111 | 1 | :11 | 開 | | | | | :11: | | | [12]
[1] | | | | | | | | | | | 訓語 | | 1 | | | | 111: | | | | | 題 | | 批 | 1 | 11. | | | 證 | | | 113 | | | | | 111 | | 丽 | 11:1 | <u> </u> | FE: | | | #: | 11 | | 1 | 1111 | :1;; | | `!. : | | | | | | | | | | | H | | 11- | | | | | 事: | | 144 | ili. | 3 | | | | | | | | | | 7 - 1 | | | 111 | 111 | 1;11 | 411 | <u> </u> | | H | | | H | | 1 | | <u>iili</u> | Hi | | | | | | | 四外 | | | 開 | ī, | 7 | | 6., | 1 | 買 | 1 | | | | | | 1111 | I | | | | | | | | | 141 | | 111 | 111 | 177 | r i: | | | 111. | | | | | | 111 | H | | | | | | | | | | | | 1111
1111 | | | | | | 111 | | 7 | O | -11: | 1.1 | | | | | | | W 10 | | | | | | 11111 | | | | | | 1 7 | 1111 | 1 | 7 | | | | | 7 | | | | 3.5 | | | | | | 111 | | | | | | 1 | | | | | | H | | | H | | urtil it. | 1: p. 2:
1: p. 1: | | | 1::: | 1111 | 1111 | 11.1 | 11111 | 11111 | | | | | / | | | | | | | | | | | | | <u>: ::11</u> | 11. | | | | | | | | | | H. | | | | | 1:11 | | | | | SHIII | :::::::: | | 1. | | :11 | |
 | | 1213 | | | | | $\frac{T}{T}$ | | 7.57 | | $\frac{15'1}{11}$ | 111 | | 細胞 | | | | | | | | ; | | | | | | - 111
- 111 | 1::1:
1::1: | | | | | | H | ₩ | | | | | | | | | | | | | | | | | | -/ | | 1 | : ' | | | | | | | | | | | 1 | | 14. | | : | | | ~ | + | | -/. | | <u> </u> | | | | 14 | | | 1178 | | | | | :1::1: | | : 11 | 11:1 | | 1::: | | | | 1 | _ | | | 0 | [i;].
[i:::: | | | | | | | | | | 44. | | | | | | ÷ | | | / | - | | | | 3 | | ## | | 6 | 11.2 | | | | | | | | | | | | - 1 | | 1 | 11 | | | | | | ## | | Z | | | | | | ļ | <u> </u> | | | | | | | | | | | 11. | | -7 | | | | | | | :1 :1 | | | | | | | | | <u>:</u> | ر ا | _ | | | . 11: | \$1,'1' | á | j | | Щ | | 世2 | | | | | | | | | | | | لسبرا | استعسب | | | | ; ; !
 | | 9 | | | Ш | | | | | | . [111] | 11.1 | 1: - | | ; | | ر.
سمیم | | | | <u> </u> | | | | <u>.ii,</u> | | 111 | | | | 7 | | | | | | | | إسر | | | | | i. i | | | | | | | | Ш | | | | | | | | | | اسم م | | | | | | | , | 11: | | 1, 1 | 1 | <i>5</i> | | | | | | | | | | | | | | | | :,'} | | | | | | | | 1 | | | | | 3 | | | i . i | | | | | | <u>; </u> | ::. | : · · · , | | | | !!:
:-: | | 1111 | | 111 | 111 | | | | | | | | 1 | | | | | | | | | | | | | | | | | H. | | | | | | 1111 | | | | | | | 111 | | Hill | | | | | | 1.41 | 抍 | 111 | | | | | | 1111-11 | | | | | | | | | | | | | * - }} | Ш | | | | | | | | | | | | | •- > | | | | | | | | . 1111 | | | | 11:51 | blij | | | 2114 | النزا | | | | 1 | | | 111111 | | 1 1 | i [: | | | | | | | | | | 諨 | | Ţ | | | | | | | | | | | | | | | | | 2 1 | TiH | | | | 7 | | | | 111 | | | | | | 12 | | | ; : : :
; | | 11: | . 3 | | | | | | ત્ | | | الح | r. | | - - | | | | <u> </u> | 47- | | <u> </u> | 1::- | F | | ` ;;} | <u> </u> | | <u> </u> | <u> </u> | | <u>in:</u> | | انب!
انان: | | | :i; | : • <u>• • •</u> • • • • • • • • • • • • • • • | | | | | | 5- | | | 1 | | _1 | | , . <u></u> | | | | - 1 | | :
 - - - | | : : | | | | : 1 ; : | | | | | | la.
Djeta | i., | 1 | | : .: | | | | | | | | 1.1 | | | | | | | | | 1 | التنانينا | | | | 1 | | | | اــــــــــــــــــــــــــــــــــــــ | | <u>-: L</u> | 1.1. | .::1 | 111 | | | 1 | | 1 | | :::: | 4-37. Wing Torque about Trailing Edge (Store at B.L. 74) ### OCHFIDENTIAL - Report No. R 361-000 Page No. 4-54 4-38. Comparison of Fuselage Moments Report No. R 361-000 ### CANTENTIA Page No. 4-55 | R 3 | 191 | -0 | UU | 10 | .દુ૯ | rio. | | - 30 | |----------|------|------------|---------|--------------|----------------|--------------------|----------------|--|----------|------------|----------------------------|----------|-------|------|------------------|-------------|--------------|--------|---|-------|--|------------|----------|----------------------|----------------|----------|----------------|----------| | | | | | И: | | / | | | | | ! | | | | | | | 1111 | <u>. U.</u> | ij | iili | | | | 11/ | 17 | 37 | | | | | | | | | | 4 | | | | | | | 10 | 1// | 11 | | | - | 1/4 | | 1111 | 111 | | :!!! | [:1] | :] | i i i | | | | 1 | | | | ij | iii. | | | - [1] | | | 11 | | 11 | | | | 171 | | H | | | | | | | | | | iir. | Tii | | | | | | 1111 | HII | | 111 | 114 | | | 1116 | | 11 | | 出 | 期 | iii | | | | ji!! | 1.5 | 4 | ,;;; | | | | П | | | | | HI | | | | tjuri
tl ist | -11 | | | | 1: | Jr. | | | | | | | | | | | | | 面 | H | | TE | | | | | FIF | | | 111 | | | | fil- | = \$ | | | | H1: | | 7111 | 145 | | E | | . 0 | H | | | | | | # | | | 圃 | 掤 | | | 甝 | | | | | | | | 3 | 1 | | | 5 | 11: | | | .3 | | | | | H | | III | | | | | | 司正 | | | | | | 4 | | -1 | |)
 | ĪH | 諞 | 27 | 11 | | ::::: | - 14 | | | | H | | | | | | | | | | | | | | | 14 | | | 16 | | :# | | ĒĮ. | | 開 | Hi | 13 | TH. | | | 聑 | Ш | | | | FI | | | | | III | | #1 | | | · S | 田の | | , , | 3 | 1115 | | 111 | | 1 | 111 | 1.3 | | | m | | | # | | # | | | H | | | | | | | 11 | 4 | | | | | | | 0 | | | | 13 | 111 | | | | | 1 | | | | 111 | | | 111 | | H | | | | | | | 111 | | 1111 | | 2 | | | | 13 | 1-11 | | | 3/2 | | | | | | | | | 11: | | | | | | | | | | | | | | | | | 12 | | | | 12 | | | | | | | HH | 111: | | 1. | | 1 | | | | | | [] | | 1 | | : 1 | | | | N | 14 | | | Y | | | ļįi | ıĦ | | | | | | 1 | | | | | | | | | | | | 20 | | | 23 | $arphi_{i}$ | | | | | | | | | | | | | | | 111 | | | | | <u>ii.</u> . | | :::1 | | | :l, | 7 | 3 | | | 13 | | | Ш | 性 | <u>}+[</u> | Ш | | | | | | | | | | | | | | .::[] | ; | | | | | | 1 | | 3 | | | | [h | 0 | | | | | | ! | | | 1 | 1 | | | | .; | | | | | | : 1 | | | | | Ü | | | | M | N | | | | | | | | | | | | | | | | | ::! | | | | . i j | C_{i} | - 0 | | 7 | 3 | | | | 7 | :: | 2 | ý. | , [| 1 | Z | | | | | l i | 111 | 20 | S | I,Ý | 19 | | | | 2 | | | | | | | | | 1111 | | ì | 1 | | 1 | | | ! | | | | | | 7 | | وا | . % | | | | Ц | | | | | l r | | | | | | | | | | : | | | | | | | 0 | | | . 'Y | | | | | Ş | | | Ш | Ш | 11 | | | | 1.22 | |)
. } | :/ | | | | | | ::::
::::::::::::::::::::::::::::::::: | | | | 2 | | | 79 | 3 | | | | 3 | Ш | | | | | | | | | · : : · | 1 | | | | | | | | | <u>:
</u> | | | | | <u>V</u> | | | | | Ŋ | | | | | | | | | : | | | | | | | | | | | | | | | | | 13 | | | | | | 1111 | | | | | | li . | | | Y | | | | <u>: </u> | | | | : ' | | | 9. | | <u>'::\</u> | 7 | 3 | | | | | | | | | | | | | | Ш | | | | | | | | | | | | N | | | - 7 | | | | | - | | 1 1 1 | | , , | 1 | | 1 | 1 | | | <i>y</i> | | | | | !! <u> </u> | | | | | | | | | 2 | ا [.::
خانگ | | | | | | | | | | | | 1 | | | | | | | 1 - 1 | | | | | | | | | | 1:3 | 2 | | | 1:::!] 1 | 4 | | | 11. | 1111 | _ | | | | | Ţ | | ii ii | 11:0 | | | | | | | | | a | | | 13. | ો | | | | | | 11.1 | | - , | | | - | | | | | | | | | | | | | | | И | | | 3 | 7 | | | 1 | | | ; i i i | | | | | <u> </u> | <u> </u> | | 1 | 11 | | | -
 | 1 | | Щï | - 1 | - ! - | 1.1 | | 11. | | ., ,,
.1.,, | ₩.
 | | '::]
 | | | | | | . 1 | | ;
 | - | ļ | | . <u> </u> | | :
 | | |
<u>221</u> 2 | | | | ш. | | | | | | | | | ···· | | 111 1 | ,- | | | 1111 | | | - | | 1 | | _ | | ببنا | | - | الل | | | | | | <u>. j</u> | ر
ا | | · · · · · · | ;
 | • • | • } | | | | | | , | _ ` | | | <u>. </u> | : | ••• | | | | :: | 1.
1
1 | į : | | , H: 1 | Hi. | | | - j | ∼ | . • . •
• <u></u> | | | -[1] | 14 | | | | | ŀ. | | - ' | - | - 1 | [:: | | ··· | | | | | l | [] | <u></u> | :: ' | | · 1 | | 1 | | | <u>.il.</u> | - - | | | | | i | . ! | . i | - | | , ; , ; | | ·
 | | | | ≥ 1 | ? | 2 3 | <u>6</u> | | 1 | | | _ ; | | | | | | | | | | 1 | _ك | | | | i ; . ' | | 1 | 1111 | | : .:!: | 11. | ::: | | | 1.11 | | - ! ! ! | 11: | | | | 1 | • | 4-30. Comparison of Fuselage Shears | | • | | | |------------|---|------------------------------|-----------------| | REPORT NO. | R 361-000 FAIRCHILD AIPE | raft and Mississ Div. | PAGES PAGE 4-56 | | | 361 R. N. Rothenberger | R. H. Putnam | E. E. Morton | | SUBJECT:- | Study of Compatibility of Ex
BW Stores with the AN/USD | DATE May 26, 1961
MEVISED | | | l | | | | SECTION 4. FACTUAL DATA (Continued) 4.2.5 WEIGHTS #### 4.2, 5.1 Drone Configuration The weight, center of gravity and moment of inertia were compiled on the basis of a drone configuration as defined by Reference 5.5. The conditions set forth in the drone configuration are as follows: - a. A 22-inch diameter tank located at drone B. L. 85. - b. A redesign of the agent tank, empty weight 460 pounds was 600 pounds, and usable volume 149 gallons was 94 gallons in lieu of the tank shown in Phase I study. Refer to Table II, Section 4.1.5. - c. Partial filling of the redesigned agent tanks in preference to reducing the drone fuel load to maintain the fixed launch gross weight of 10,800 pounds. | . Item | | | Weight | |--|--|-------------------|------------------------------------| | Total Recovery Gross Weight | | | 4668 | | Fuel - Usable @ 6.5 lb/gal Wing Inboard Wing Outboard Fwd. Fuselage Sump | (308.2 gal)
179.7 gal
62.0 gal
54.0 gal
12.5 gal | | (2003)
1168
403
351
81 | | Stores - Expendable Pylon Tank (149 gai usable volume) Agent @ 8.33 lb/gal | (110.8 gal) | (2)
(2)
(2) | (2896)
130
920
1846 | | Total Drone Gross Weight (less booster) | | | 9567 | | Booster | • | | 1300 | | Total Drone Gross Weight (plus booster) Fuel - Prelaunch checkout | | | 10867
67 | | Total Launch Gross Weight | | | 10800 | CONFIDENTIAL | REPORT NO. R 361-000 FAIRCHILD AIRCRAFT AND WISCHISC DIV. | PAGES PAGE 4-57 | |---|-----------------------------| | M-361 R. N. Rothenberger R. H. Putnam | APPROVED AV Morton | | Study of Compatibility of External Wing-Mounted SUBJECT:- BW Stores with the AN/USD-5 (XE-1) Drone | DATEMay 28, 1961
REVISED | SECTION 4. FACTUAL DATA (Continued) 4.2.5.1 Drone Configuration (Continued) Booster Drop Off GW (level attitude) - Weight = 9,500 lb $I_{x_{-}}$ (Roll) = 7,513 slug-ft ² I_2(Yaw) = 16,646 slug-ft 2 $P_{X_0^{Z_0}} = -160 \text{ slug-ft}^2$ Agent Tanks Empty GW (level attitude) - Weight : 6,457 lb I_x = 3,464 slug-it ² I = 11,063 slug-ft ² P_{x,z} = -79 slug-ft 2 22 inches Agent Tank Diameter = Length = Length Volume (outside skin contours) = 187 inches 190 gal Volume (usable) = 149 gal NOTE: The drone center of gravity and moment of inertia as influenced by partially filled agent tanks has not been investigated. CONFIDENTIAL - CONTIDENTIAL | REPORT NO. | R 361-000 FAIROHILD Alreraft and Missiles D | IV. PAGES PAGE 4-58 | |------------|---|---------------------| | M-361 | | E. E. Morton | | | Study of Compatibility of External Wing-Mounted
BW Stores with the AN/USD-5 (XE-1) Drone | BATE May 26, 1961 | | SECTI | | _ | 4. 2. 6 SEA-LEVEL MISSION. One sea-level mission was calculated for the 22-inch diameter tank located at butt line 85. The agent weight and tank weights are different from those used in the Phase I study; however, the sum of the agent and tank weights are the same. The calculation of this mission is shown in Table I and the mission profile is given in Figure 4-40. CONFIDENTIAL \$ -800-23A 是一种,我们是一个人,我们也是一个人,我们也是一个人,我们就是一个人,我们就是一个人,我们也是一个人,我们也是一个人,我们就是一个人,我们也是一个人,我们也没有 第一个人,我们也是一个人,我们也是一个人,我们也是一个人,我们就是一个人,我们就是一个人,我们就是一个人,我们就是一个人,我们就是一个人,我们就是一个人,我们就 | - | 91 | 8 15 | | | • | |----|------|------|-----|-----|----| | ш | 41.0 | | | 41, | H. | | 62 | 1.1 | | 3.2 | | 1. | | REPORT NO. R 381-000 FAIRCHILD Airpraft and Missiles Div. | PAGES PAGE 4-59 | |--|------------------------------| | M-361 R. N. Rothenberger R. H. Putnam | Western E. Morton | | Study of Compatibility of External Wing-Mounted BW Stores with the AN/USD-5 (XE-1) Drone SUBJECT:- | DATE May 26, 1981
REVISED | | SECTION 4. FACTUAL DATA (Continued) | · | ### TABLE I ### SEA-LEVEL MISSION CALCULATION | | | Manie Miamaia - 06 Yashar | |---------------------------------|---------------|---------------------------| | Butt Line 85 | | Tank Diameter 22 Inches | | Take-Off Gross Weight | lb | 10,867 | | Total Fuel | lb · | 2,003 | | Fuel for Reserve | lb | 0 | | Fuel Used For Check Out | lb | 67 | | Climb Gross Weight | lb | 10, 800 | | Drop Booster | lb | 1,300 | | Gross Wt. @ Start of Cruise Out | lb | 9,500 | | Fuel Assumed For Cruise Out | lb | 720 | | Avg. G. W. For Cruise Out | l b | 9, 140 | | Naut. Mi/Lb of Fuel | - | 0.1543 | | Range In Cruise Out | n. mi. | 111.1 | | Average Speed | kn | 463.2 | | Time to Cruise Out | hr | 0. 2398 | | End of Cruise G.W. | 1 b | 8,780 | | Arrival Gross Weight | 1b | 8,780 | | Dispense Agent (Cargo) | . lb | 1,846 | | Dissemination Speed | kn | 463.2 | | Dissemination Rate gal/min/d | | 18 | | | l/tank | 110.8 | | Dissemination Time | hr
hr | 0, 2057 | | Dissemination Range | n, mi. | 95.3 | | Avg. Wt. During Dissemination | 1 b | 7, 541 | | Naut. Mi/Lb of Fuel | | 0. 1507 | | Fuel Used During Diss. | lb | 632.3 | | G. W. & End of Dissemination | lb | 6, 302 | | | | 4 444 | | Wt. @ Start of Cruise Back | lb | 6,302 | | Naut, Mi/Lb of Fuel | - | 0.1507 | | Range in Cruise Back | n. mi. | 25 | | Average Speed | kn | 463.2 | | Time to Cruise 25 n. mi. | hr | 0.0539 | | Fuel Used to Cruise 25 n. mi. | lb | 165.9 | | Wt. @ End of 25 n. mi. Cruise | lb | 6, 136 | | Drop Tanks | lb | 1,050
5,088 | | End Weight | lb | 5,088 | | 200 | ALEITEN IVAL | | | | | | 3-800-23A を表現される。 1987年 - 1988年 19 DECLASSIFIED IN FULL Authority: EO 13526 Chief, Records & Declass Div, WHS Date: 2 6 APR 2013 | REPORT NO. R 361-000 PAIROHILD AIRGRAFT and Missiles Div. | PAGES PAGE 4-60 | |--|-------------------| | M-361 R. N. Rothenberger R. H. Putnam | E. E. Morton | | Study of Compatibility of External Wing-Mounted subject:- BW Stores with the AN/USD-5 (XE-1) Drone | DATE May 26, 1961 | | SECTION 4. FACTUAL DATA (Continued) | | TABLE I (Continued) ### SEA-LEVEL MISSION CALCULATION | Butt Line 85 | | Tank Diameter 22 Inches | |--|------------------------------|--| | G. W. for Return Fuel for Return Avg. Gross Weight Naut. mi/lb of Fuel Range in Cruise Back Avg. Speed Time to Cruise Back Radius of Action Total Mission Time Recovery Weight | lb lb n. mi. kn hr n. mi. hr | 5,086
418
4,877
0.2063
86.2
463.2
0.1861
111.2
0.6855
4,668 | CONFIDENTIAL 8-800-23A DECLASSIFIED IN FULL Authority: EO 13526 Chief, Records & Declass Div, WHS Date: 9 8 2 6 APR 2013 3 - 800-23 A 4-40. Sen-Level Mission with Final Tank Configuration DECLASSIFIED IN FULL Authority: EO 13526 Chief Reports 9. P. Authority: EO 13526 Chief, Records & Declass Div, WHS Date: 2 6 APR 2013 | | A. A. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. | | |--------------|--|------------------------------| | REPORT NO. R | 361-000 PAIROHILD Afternit and Missies Div. | PAGES PAGE 4-62 | | M-361 | R. N. Rothenberger R. H. Putnam | AFFROVED BY
E. E. Morton | | SUBJECT:- BY | udy of Compatibility of External Wing-Mounted W Stores with the AN/USD-5 (XE-1) Drone | DATE MAY 26, 1961
REVISED | | SECTION | 4. FACTUAL DATA (Continued) | | 4. 2. 6. 1 Tank Loads. > A summary of the design load factors for the tanks is presented in Table II. These load
factors are based on the design conditions for the basic drone. Inertia loads and airloads on the tanks are presented in Table III. 8-800-23A 原金子表示之子之子是是是一种人,他们也是一种,他们也是一种,他们也是一种,他们也是一种,他们也是一种,他们也是一种,他们是一种,他们也是一种,他们也是一种,他们 | DECLASSIFIED IN FULL Authority: EO 13526 Chief, Records & Declass Div, WHS Date: 2 6 APR 2013 | |---| |---| | Design
Loading
Condition | Drone
Gross Wt. , 1b | Altitude | Mach
Number | Limit Load
Factor | Ultimate
Factor of
Safety | |--------------------------------|--------------------------|----------|----------------|--|---------------------------------| | Launch Phase Flight Phase | 10,800 (with max. agent) | S.L. | 200 knots | n _x = 5.0
n _z = 2.33 | 1.5 | | Symmetrical Flight | 8,500 (with max. agent) | S. L. | maximum | n _z = 4.72, - 2.72 | 1.5 | | Sideslipping Flight | 8,500 (with max. agent) | S.L. | i | n _y = ±1.0
n _z = 1.0 | 1.5 | | Rolling Flight Accelerated | 8,500 (with max. agent) | S. L. | rıaximum | n ₂ = 3.0 | 1.5 | | Steady | · | | | $\ddot{y} = \pm 6.8 \text{ rad/sec}^2$
$n_Z = 2.33$
$\dot{z} = \pm 3.05 \text{ rad/sec}$ | | lateral load factor; positive - right - normal load factor; positive - up ₩ - rolling acceleration; positive - right wing down PAGE 4-63 M-361 R. N. Rothenberger REVISED DATE MAY 28 Agroym Morton 1981 R 361-000 PAIROHILD | EPOR | IT I | 10. | F | 136 | 1- | 000 |) F | Al | RO | HIL | D. | Al | FOF | <u>5</u> | 2 | | 元は | Mit | | lla
Ila | • 1 | Div. | Γ | | | GEB | | | 4-6 | 4 | |----------------|----------------|------------|-----------|-----|----------------------|----------|----------------------|------|---------------|------------------|---------------------|------------------|--------------|-------------|-----------------|-------------|------------|------------------------------------|-------------------|------------|---------------|----------------------|--|-----------------------------|---------------------------------|---|-----|--------------|------------|---| | ODKE | , y | ٧- | 36 | 1 | F | H. | W. | R | othe | nbe | rg | 19 | | CN. | q | 13 | H, | Pu | 772 | m | | | APP | E, | E. | Me | ort | on_ | | | | Ų BUE | | | S | tuc | iy | of | Co | mp | atik
h ti | oilit | . 7 | of I | Exte
3D- | ern
5 (| al
XI | V
E- | 7in
1) | g-l
Dre | /lon | ınţ | ed | | DAT | | M | arran | | 19 | 61 | | | | Pes. DIRECTION | | | • | | | | | | | 8 | Inboard | | 9 | an and | Paragra | Jacobra | Mose right | (View from top | | | | | | | ٠ | | | | | | ROLLING PLIGHT | STEADY | LT. POLL | #.7 | • | • | -3.08 | • | 2.0 | 0 | | 0.8 | -2.0 | | 28 | 007 | 2 | 92 | -1#78 | ļ | ç | 679- | | | | | | | | | | | BOLLING | 2 | FT. 1501.1 | 2.33 | • | ٥ | 3.65 | • | 2.0 | • | | -3.0 | -2.0 | | 3 | 00Z) | 8 | 3 8 | 2 | . | 8 | 2 | | | | • | | • | | | | | FLIGHT | ACCELERATED | LT. ROLL | 69 | 0 | 89 | ٥ | 0 | 2.6 | ٥ | | 1.57 | - 49 | | 8 | 90j † | 8 | 2 | -1250 | • | <u>ş</u> | -825 | | | | | , | • | | | | | 8 | | RT. BOLL | ~ | • | \$ | • | ò | 2.6 | • | | 7-1-13 | <u>.</u> | | 8 | 901 | 2 | 3 | -1250 | | § | -625 | | | | | | | | | | | SIDES PRING | THE. | | ₹ | 7 | • | 0 | m | | ** | | 7 | - | | 8 | 81 | 22 | 8 | 2140 | | <u>8</u> . | -2620 | | | | - | | | | | | | SIDES IPPING | FLIGHT | | - | - | ٥ | 0 | 6 | | * | | 7 | 7 | | 93 | 90 | 276 | 2600 | -6030 | | 2 | <u>8</u> 2 | | | | | magth | | | | | | 13 | I FREE | | 1.72 | ۰ | • | | • |
 | • | | 4.72 | 0 | | | Ü | | 2 | 2 | | 8 | - 188
- 1 | | ral ucs | | 22 | Of tamek b | | | | | | STREETRICAL | FLIGHT | | -2.72 | • | ٥ | • | | -2.2 | 9 | | 2.72 | Φ, | | 8 | 987 | 28 | 98 | -3000 | | <u>8</u> | 8 | | re limit values | | in all cases | rred to # | | | | | | | | | | | rad/sec ² | rad/sec2 | rad/sec ² | deg. | . | | | | | 4 | # -16 | 2 | ā | 4-10 | | | | | | left tank | s are on tanks | derudynamic moments are referred to 40% tank length | | | | | | DROKE FLIGHT | COKDITIONS | | | | | | | | | nk mertia pads | Horsal lose, factor | Side load factor | mak Airloads | Homal force | Pitching moment | Chord force | Side force | (Vith vert. fias)
Yewing moment | (Wiff wort, fins) | Side force | Yawing moment | (Without wert. fins) | HOTES: I. All leads and lead factors a | 2. Values are for left tank | 3. Horizontal fins are on tanks | ÷ | | \ r \ | <u>171</u> | A | 3-800-23A DECLASSIFIED IN FULL Authority: EO 13526 Chief, Records & Declass Div, WHS Date: 2 6 APR 2013 POINT IDENTIFIED | | | _ | ON TUL | IVITAL | | 3 | |--------------|------------|---|-------------|------------------|--------------|----------| | REPORT NO. R | 261-000 | PAIRCHILD AIRS | E B ALRPLAN | Missiles Div. | | PAGE 5-1 | | M-361 | R. N. | Rothenberger | CHECKED B | Putnam | APPROVED BY | orton | | SABTECL: | | Compatibility of E | | | DATE MAY S | | | SECTION | 5. | REFERENCES | | | | | | | 5.1 | FAMD Report Ri
Coefficients Adv
November 1958 (| anced Su | rveillance Syste | | | | | 5.2 | FAMD Report Ra
Data High Speed
(Confidential). | | | | Funnel | | | 5.3 | FAD Report No.
Final System AN
(Confidential). | | | | | | | 5.4 | FAMD EW-132,
Study," April 19, | | | fills BW Dro | ne | | | 5.5 | Interoffice Memo
EPD-3464, May 4 | | "General Mills | Contract - 1 | v1-361," | DECLASSIFIED IN FULL Authority: EO 13526 Chief, Records & Declass Div, WHS Date: 2 6 APR 2013 COMPIDENTIAL | | 9011 ID#11117F | | |---------------|---|-------------------| | REPORT NO. R3 | 61-000 FAIRCHILD Alroraft and Missiles Div. | PAGES PAGE 6-1 | | M-361 | R. N. Rothenberger R. H. Putnam | E. E. Morton | | | Study of Compatibility of External Wing-Mounted | DATE May 26, 1961 | | | BW Stores with the AN/USD-5 (XE-1) Drone | REVISED | | SECTION | 6. APPENDIX | | | | • | | 3-800-23A | 「日本のでは、 R. S. N. FEB. 23, 61 80 2533 REAR VIEW AERODYNAMIC DIMENSIONAL DATA GENERALIZED LIQUID AGENT STORE Page determined to be unclassified Reviewed Chief, RDD, WHS IAW EO 13526, Section 3.5 Date: 2 6 APR 2013 李子子,是是一种,这个人,是一种,他们是一种,他们也是一个人,他们也是一个一个一个,他们也是一个一个一个一个一个一个一个一个一个一个一个一个一个一个一个一个一个 | ٠ | • | • | | | | | | | | | | | | P | 6, - | 18 | 9 | |---------------|------------------|-----|-------------|-------|---------|--|----------------|------|-----|-----------------------|----------|---------------------|---------------|--------------|-------|------------|-----------------| | ,- | 40011 Br | | | | No | | AME | | | VIA | FION | , INC | , , | | 6/- | د مَ
مد | -, 7 | | | | • • | | | 1 | 4 | ON | | | | | | | , 40 | | -12 | • | | , H8- | | | | | · | | | | | -1 | <u> </u> | | | 141 HA | - •- | . | | | 2010 | 24 | FE | <i>B.</i> (| 61 | | | | , | T | 7 | | | | | G.0. | 25 | 33 | | | | | | | | | | | | | | | | 1. | | | ļ., ļ.; | | - | - - | MA | 118 | 1,7 | | 111 | -67 | 10 | 1 | 100 | دمط | ro. | C71 | - | QF | 0 | 2 | 6/1/2 | 1 | | 14 | 4 | 1/9 | VIZ | 1 15 | PER | 7 | 27 | .2.E | 45// | 147 | ING | 37 | RE | | <u> </u> | + | | 1 11 11 | | | | + | | | | | | | | · | | | | | - 940 | | | | | | | | 1 | | | <u> </u> | | Ty | FI | 74 | 14 | | : | | 1 | . : | | | | | | | | | | 1 | | | | | | | + | | | 1 | | ┿ | - | | | | | | <i>y</i> | ļ | | | - - | | | 500 | 3: | 00 | | | | | | | | | | 1 | | | | | | | | | | | . | . i . | | | | 1 | | 1 | .: <u>.</u> , | | | | | | | | | | | | | |
| | | | | <u> </u> | | | | | | Q. | 700 | | 100 | | | | | ļ | | | | | | | | | | | N | | | | | | Al Ind | | | | | | '] ' | | i | III | ; :. | . : !: | | 2 | | | | | | ii. | | | | | / | | | | | | | | 707 | 600 | -2 | 100 | | | | ļ | | | | | i | - | 702 | TON'S | - 27 | | | 3 | | | | | | ļ | | | | 1 | | i | A | | | | :- :- | | | | | | | | | | | | | | کموند. در.
محموم | | | | | | | 2 | 500 | - | 988- | | | | | | | - | | | | | : | | -4- | | 2 | | 3 | | | | 1. 11. | | | | | بمم | | - | ر بو 🎞 | 17 | 5,36 | - خومنو | | 3 | | 7 | | | | | | | | | | ممنع | | | | | . ! ., | | 3 | 000 | 3 / | ** | | | | | / | | | | | | | | | | | 0 | | 3 | | | | | | | | ن در در در
ان مرزم | | .,., | •••• | .i . | | | 1 111 | | N | | | | | ļ. ļ.,. | | / | | | | | | | | | | | | 13 | 300 | 3 1 | 200 | | - | | 11 | | | | | | | | | | | | 3 | | | | | | | | | | | | | | | | | | | 9 | | | | | | 1 | | | | | | | | | | | | | 4 | 200 | | 1010 | | | | | • | | | | | | WE | BAT | | | | | | | | _ | | | | | | التبنية | | | 1111 | | | | | | | | | | | 1.4 | المتعلقة المعتب | 7 | | | | | | | | | | | | | 750 | | 100 | | | | | | | | + | • | | | | | | | ! | | | - - | | | | | | | | | | | . | FOC | | | | !: . : | | | | • • • | | | | | | | | | | IX | EM | | | | | | | 9 | 1 1 | 4 | Δ | 80 | , | 12 | a | .: 15 | 0 | 20 | 0 | | | | | | | | | | | 1000 | | | | | | | | | | | | | · | | | | | A6. | | | AA | ACI | | . M E | R | • | ::; | # | | | | - | | | 41 | | | | | | | 7 7 1. | | , | . 1 | • | i | | 1 | | 1995年 1 DECLASSIFIED IN FULL Authority: EO 13526 Chief, Records & Declass Div, WHS Date: 2 6 APR 2013 2 6 APR 2013 NUMBER Page determined to be Unclassified Reviewed Chief, RDD, WHS IAW EO 13526, Section 3.5 **Liate:** 2 6 APR 2013 | PUBB | 1/14 | | | ٠ | | | | | | | | | | | •• • •- | | | | | | | | | | | | | 18 | | | |--------------|------|---|---|--|---------|--|--------------|---------------|-----|------------|------------|----------------|----------|--|---------|-----|-------------|--------------|-----------|-------|-------|----------------------|--------|------|---------|------------|--------------|---------------|----------|----------------| | **1* | | P 81 | | | | | | | 1 | 10 | R | TH | A | MI | RIC | A | N | AVIA | TION | v, 1 | NÇ | - | 7 : | ر: | - 6 | 1 - | ? | 51 | | 5 | | . HAN | - | | | | • • • • | | | - | | | | | | | | | | | | | | Ì | | | Me | | | - ;• • | •• | | | | -:- | יי
כ | 4 | -
F'd |
رے |
3. | 4 | į | - | | | | | | | | | | | | - | - | | | Ġ | . <i>C</i> |
7 | 2 | 5. | 33 | | | | | | | Ì | | | | | ļ., | | | | : | Tagai. | Π. | | Ti ii | | 1 |
: | | #OF | | • | | : | T . | | 1:- | | | 1 | | | | | | G | ط | | * | 5 | 13 | 1 | S | 94 | A | 22 | 22 | \$72 | 24 | 2 | ļ., | | _ | | | | | , | | | | | | | | | 22 | | | | | | 20 | رط | וני | 200 | ارم | ~ | يرط | 00 | 90 | 7.5 | 2 | | | | | | | •• | | | | | | • | r | | | | | | II | | | | ŀ. | Ι., | : | | . | | | • • • | | | | | | | | | | | Ţ | 1 | | | | | | | | | .li | | | | 1:.: | | | | FF | | | | - | | | | - | • -• | - | | | | | + | . | + | | | | - | i. - | 4 | 4 | 4 | V. | 42 | 2. | CC | 24 | l E | 1811 | 40 | 76 | N | 1 | | | | - | - , | | - | | | | | | 1 | | | | | | | | | 1 | 1 | · · · · · · · · · · · · · · · · · · · | | | |
 | | | | | | | • • • • | | | | | | | | 1 | | | | 1 | VZ | גוכ | 2 | | 2 | 42 | 79.
2.5 | | 1/5
 | 19 E | | 01 | V s | 400 | ٥ | . 7. | PA | 24 | • | | | •: | | | | | | | | | | | | | | 1 | 34 | d - | K.J. | | | | . | | | | | | i | :
: | | • | | | | | | | + | 1 | | + | : <u> </u> | Ť | | | | 1 4 | - | - | | | <u>. </u> | - | + | | | 1 | - | ···· | | | | | | | | | | | 1. | 4 | - | | | | | - | 1 | | 1 | - | | +- | - | - | + | | | | - | ļ.;i | :: | | | | | _ | | _ | | | | 1 | | 2 | | | | | | | | | | | ļ | | | | | | | | 1.11 | | | | | .11. | |] | • | | | | | | | | |
 | :: | · i | | | | | | | | | | - 1: | | | | | | | | | | | | | | 1 | i- | | | | .: | | | | | | | t | | | | ð | + | : 1 | | | | ļ., | - | | | • • • • • • • • • • • • • • • • • • • | | - - | | | | سا | | a | ۲. | À | | | | | | | | | + | | | | | | - | | | | - | - | <u> </u> | | | - | | مستعند | | Ţ | ••••• | | _ | | | | ::: | | | | | | | | | : | - | | + | + | | | | | | | | 1 | | | | | | | | | | | | :
 | | i.: | | C | | | | T., | | | | | . I | i
i::: | | - | | | | | <u>.</u> | ., i: , | | | | ،
پير | | A | | | | į. | : | į | | | 7 | 7 | | | | | | | | | | | | | | | 11. | | سنسل | 7 | | | 7 | - | | | | | | | | | | | , | | - | | + | | + | - | - | i - | | | | + | - | | | | • | <u>.</u> | - | + | | | | •••• | + | + | | - | - | | | | L | | | | - | | | | | | | - | | | | ļ | - | Δ. | - 4 | 6 | | | _ | | . | | | | | | o | | | | | | | | 1. | | | • ; | :::: | | | | مست | - | - | | | 4 | | | | | - | | | | | | | Ī | | | | 1 | ::: | : : | | | | | | | · : : : : | | | . .:. |] | oc | | | | | | | . | ٠. إ | | | | | | | L | † | | | | <u> </u> | Ŀ | <u> </u> | | | | + | | | | | | | - | | | : | | · | | ···!=- | | | | - 1 · · · · · · · · · · · · · · · · · · | ď | 4 | | <u> </u> | Ŀ | | - | | L | | | | | 1 | _ | | | | - | OC
BC | | a' | | | | | + | - | | 1 | - | : . | | 1. | Ë | - | L | - | | | | 1 | | | | | | | ļ <u></u> | ļ | | <u>.</u> | | | 4 | | | | | | | | | . | | | L | | | | | : <u>.</u> | 7.3 | j ::: | | :::: | | 1 | | | | | ::: | · | | •••• | | | 1 | .:
: | | ! | | | | | | | 2 | | | | 7 | | | . 4 | | : | | 7 | | : a E | , , | | |) : | J | | 1 | | 1 | : | T | | | | | 1 | | | | <u> </u> | | | | 1 | 14 | C | <i>y</i> | 7 | /UA | 98 | LF A | | . : | | + |
. :. | | | | ; - | 1 | | + | | | ! | - | 1. | 1 | | - | : | - | <u>:</u>
: | | , | | | | | | + | | <u>:</u> | | | | . | - - | | + | | | - | - | | | † ::: | | · · · | , | : | ŀ··· | • • • • | 1 | : :: | | ;÷·: | | : | | | : | | : | -: | : | | ŀ | | 1 | i' | 1. | ::: | | | + | : j -:: | Page determined to be Unclassified Reviewed Chief, RDD, WHS IAW EO 13526, Section 3.5 Uate: 2 6 APR 2013 | | | | | | | | 1 | N | OF | TH | AME | RICA | IN A | VIAT | rion. | INC | 77 | 5.6 | 51. 2 | 15 | · · | 6 | |-------------------------------------|----------------|--------------|----------|----------|------------|----------|--|-------|------|--------------|----------|--------------|---|-----------|--------|--------------|----------------|---------------|--------------|--------------|--|--------------------| | **** | *** | | | <u> </u> | • • | | İ | | | • | | | | | | | | * *** | | | | • | | `# \$ * | • | _ | . ہے: | | • | , | , | • • • | | | | | | | | | | | e. 0. | ë | 5 |
3 3 | | BATE | Till | <u>ノ</u> | 7.4 | | 1 | 0 / | 1 | 1.1 | | | | | . : . | | | | <u> ••••</u> | | | | <u>. </u> | | | 11 111
1 - 1 1 - 1 | | | | | L | | 2 | | 3 | 93 | 250 | 26 | 75 | 0. | 5.72 | RE | ļ | | | 1 | | | | | | | تدر | ما | 72 | / | | عرا | | eni | אנעכ | AM | IC | 24 | 288 | CZZEZ | P/S | TICS | | | | 1.11 | | | | | | | | | dii: | . : | | | | ll | | | li : . | | | | | | ., | | | | | + | | | | | - | | . : | i - | CO | · ' | | İ | | | | | | | | | | - | | + | - | - | | - | - | 4 | 1 | !M! | 2. | co | VE | all | PAT | aN | | | | - | <u>.</u> . | | | - | | 1 | | L | | | | | • | | | | | | | | | | | | ··· | | | 1 | | . | : | 1 | 10 | 7 | <i>E</i> . | | | | AA
-S | | | | | 57 | ORA | : | | Ŀ | | | | | | | | .: | ;
; | | | | | . FT. | | | | İ | : | | :
; | | | · | · | | | | | | | | | - | | | | | | | | | | | | | | - | *** | | | | <u> </u> | | | - | | | <u>:.</u> | - | | | | | | | | | | | - | 1 | - | | | | - | + | 1.2 | - | <u> </u> | <u> </u> | | | .::. | - | | | | | | | | ļ <u>.</u> | | | :
: | - | | 4 | | | • | | . j
. j | L | 1 | | : | | | | | <u>.:</u> | | | | - : | | | <u>;</u> .: ' | | | | | | | | | ::: | <u> </u> | .:. | | ji. | | ::.:.
::: | | : | . : | | ac. | 10 | | | 1. | | | | | | | | T. | | | | | | | | | | | | | | |] | | | | • | | 7 | 9 | | | - | | | == | 11. | | | | | - | | | | | | + | | | T | | | | | | - | 1 | | | | | | | | | | . CC | 4 | | - | | - | | | 1 | | ٠. | L | 1. | - | 1. | | - | | | | | | | | | ļ | | ļ | | | | | C ₂ | | ļ. | _ | Ë. | L | | ļ., | | | | | | ; | | | . GC .≅ | 60 | | ļ | ·
· · · · · · | | | | | | | | | | ***** | | | | | | | | | <u>:</u> | : | , | QC = | 4. | | | | | | | | | : · · | | | | - | | | | | | 1 | | | : | | | - | | - | | | - | | | . | | <u> </u> | | - | - | | | | | | | | | øÇ | - 2. | | | | | | _ | ļ | - | | | | | | - | | | | | | | | | | | | - | | | | - | | - |)
] | L | | • • • • | #:
- | :::! | | | | | · | | | | œ | =0° | | :::: | !! | | | | | | . 5 | . | | : | . • 4 | T | | | | 1/100 | ,
,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, | 2 | 9 | : . • |) : | | | :- | | | | | [| | | | - | | | | | | | : | east St. | | | | | | : | 1 | | | | | | | ••••• | | | | . . | | | | | | | | | | | ···· | . | - | | | | : | | | ÷,- | | | ļ | <u>. </u> | | -+ | : | | | · · · · · · | ;
, | | | • | | | <u> </u> | | . !
 | | : | ٠. | ! . | : : | | : | ŀ | •••• | | 1 | | | | | : | . ! | | . ! | | • | | • | | Page determined to be Unclassified Reviewed Chief, RDD, WHS IAW EO 13526, Section 3.5 Uate: 2 6 APR 2013 2 6 APR 2013 | • | 14 -7 | 21 | • | - | | | | | |---------------
--|------------|-----------|----------|-----------------------------|----------|----------|----------|---------------|------------------|-----|----------|------------|----------|--------|------|----|--|-------------|--------|------|---------------------------------------|--------------|-------------|------------|------------|------------|-------------------|----------------| | ,, | 1 24 | | **. | | | ••. | | | | No |)F | ITH' | AM | 1E | RIC | AN A | 41 | TAIV | ION | , IN | _ | _ | | | ú/- | | | | | | • • | 18 4 m | +1-1 | Ŋ | | | | | | - | | | | | | | | _ | | | | | | -4=1 | 44
~ | | | | <u>.</u> . | - 4 | | 54 | ** | / | 7 | <i></i> | 6 | 8. | 6 | / | \perp | graner
Graner | | 1.
 | त : र | | | 1 1 | _ | .,, | | | - | <u>ئىل</u> | | ړ. | ن. | 25 | 5 3 | 33 | _ | | | . , | | | ľ | | | | 5 | 7 | و | | 22.2 | | ₽. | 24. | | | 7 | C F | فرا | | · · · · · · · · · · · · · · · · · · · | - | • | ; : | | | | · | | | | Ţ. | | | - | | | .l | | ļi | | | | ••• | | | . | · · · · · | : | ١ | - [| - | | •:•
• | | | | | | | | - | - | 2 | 72 | 4 | 4 | Z | 7 | 2 | A | - | 60 | DY | 4 | | K | * | W. | 2.01 | C) | | 245 | 77 | | P | +- | : | | : | | _ | | 1. | 1 | | <u> </u> | L | A | 1 | 72 | 4 | 4 | 16 | 4 | 12 | 2/14 | W. | 4 | | OE | | 14 | Z Z | 42 | | | | •• | | | | :
: | ! . | Ŀ | | | | | | | ļ | e, | 24 | IN. | FZ. |) | ca | 1/5 | | 341 | enz. | 10 | 1 | • | 1. | :
: | : | <u> </u> . | ·
· · · | ··.·i | | | .; | | | Ţ., | , | | . : | .:: | | ! | | · | | | | | | ŀ | 1 | | | - | :, | | : | | - | | | : | | ÷:- | | | | | | 7 | 10 | , | 7 | 12 | 24 | 7726 | A | d | 500 | a | | M | A. | 5 | 7 | 7.E | 4 | <u> </u> | | | | |
:: | | | 1 | - | `}
 | - | - | | | | | 1 | | عم | - | 2. | EC. | 101 | Ý | 9L. | AR | 2.4 | 2 | | | | <u></u> | | | | ;:, | | • | | | - | | | | | | | 1 | 4 | A 16 1 | 1 | 9 | 44 | VO | 1 | ₩ { . | | 1_ | 1 | | _ | **** | | - | | | | | • | | | | | | | | | | | | | | | | | . | | : | | | . ! . | - | | | | ••• | | :
: | | | | | | | | - | | .:: | ļ. ;: | | ::: | | | • | · | | | 4.4 | | | 1 | | | | | | : | | · | | | | | | | | | | | | | | | | | | - | + | | | - | | | | | | | | | _ | | " | | - | | H | | | | | | - | - | | + | | | | + | - | <u>;</u> | | | - - | 1:- | | | | | - | | | | | | 1 | | | | | | !! ! : | | | | | • | | - | 1 | ·: ·· | | | - | | - | | | | : :
: | | 11. | | | | | | | | | | | ļ. ; | | | | | | : | . | | . . | | - | . | Ţ. | | | | | | - 6 | C | - 70 | | . : | , | | | | | |
 :::. | | | | | | - | | | 10ماننے | +++ | | | | + | ************************************** | · i. | | | | | • | | · · | , | | | | 11 :
11: | <u> </u> | 5 | ļ: | - | ij, | | 2 | F | | | | :
 | - | | | | 1 | | ********** | | 7- | | 10 | | | - | • • • • | | | | ::':
: :: | - | | #7 j | | 10 | 1 | | E | | | _ | <u> </u> | 1 | | | | Ŀ | | | | _: . | | - | | | | | | ٠. | | !4 ! ! | | | | Ŀ | ļ
 | į: | i | | |] l. | | <u></u> | 4 | | | | + | | | | 7 | | 1- | |
 | | | | 4 | | : 1 | | | | | | 1 | | | | | | . : | | | | | I | | | - | 1 | | - 24 | - | . 40 | | - | | • 1 | | | | | <u> </u> | <u> </u> | - | | | | | | | | | | •••••• | | + | <u>.</u> | | | + | | | | 2 . | + | | | | | :!
:::: | | :: | i ik | | 1 | - | 4 | | | | - | | | - | 2 : | | 1 | | | - | + | | a | - 1 | <u>a:</u> | ļ-, | | | | | | _ | | ; | | -11 | | | | | " | | | | | | | 1 | ::::.
 | 4 | | | 1 - 1 | 7 | | | | | | : : | | | | ļ | | | | 1 | <u> </u> | | ••• | ļi. | | M | 161 | ~ | N | UM | 4 | EA. | | | j. | | : | | | | | [- | • | | | | | | | : :: | ļ., | | | | : :: | - | | | | | · | | | | ; ···· | 1 | | | | | | -1 | | ••• | | | | | ļ | - | | - | - | - | • | | - | <u> </u> | | - | | | + | | | | - | | <u>.L:</u> | | | - | | · | | | | | | | ļ., | ! : . ·
: · · | <u> </u> | | <u> </u> | | | 1 | | ļ <u>.</u> | | | | - | | | | - | ••••• | ļ | | | | ••• | ;· ; : | | | | • | ŀ | | | | . , | | | | .,
 | | | | | | | | | | | | | | j | , | | | | | | | : . | | | | | 1 | | | | i | Ţ | | | | i | | | | | | | | | | | | .] | | , | | | | ı | | | | ì | | , | - 1 | • | 1 | | 1 | • | | | | ì | - 1 | | , | | 1 | . ! | | : | ł | | | Page determined to be Unclassified Reviewed Chief, RDD, WHS IAW EO 13526, Section 3.5 Date: 2 6 APR 2013 Page determined to be Unclassified Reviewed Chief, RDD, WHS IAW EO 13526, Section 3.5 Date: 2.6 ARD, 2016 2 6 APR 2013 | P98 P4 | i wan | • * | | R | 5 | N | | | 7 | 101 | RT | H | A | MI | ERI | C | AN | A | VIA. | TIO | N. | IN | C. | |) .
 | - | ٠٠ /٠ | | | ·9 | |--|--------------|----------------------|------------|------------|----------------|--------------|--------------|--------------|---------------|------------------|----------------|----------|------|------------|--------------|------|---------------------|--------|----------------|------------|----------|--------|-----|-------|---------------|----------------|---------------|-------|-------------------------------|-------------------| | DATE | | F | <u>-</u> 4 | 3 . |
2: | رو | 6 | / | - | | • | | | | | | | | | | | | | |) | 2 | O. | 2 | ۔
و۔ |
وزا | | | | | | | | 1 | | | 1 | | 1: | | | | L | | | | | | | | T | | | :. | | T | | | | | - | | | | | | 1. | | | | - | ن
روز | 1 | .i | | i. T | Ĭ., | | 3 | - | - | | 十 | ••••• | | | :
 | | <u></u> . | ļ | | F | 4 | | * | ته | F | 2 | ک | Z | a. | 5 | | 4 | 4- | 94 | 1 | 52 | 0 | CI | | 26 | <u>,</u> | F/L | 14 | | 7 | ٠. | 25. | 172 | 104 | 12 | | R | + | M | - | 24 | de. | 0 | h | 14 | 40 | | 2 | æ, | 424 | Q 4 | 4 | 2 | - . | Z | 1 | <u>.</u> | 1 | 00 | يم. | 21 | 2.5 | × | A. | Æ | | ! | | | | | L | - | | - | 1 | | | 4 | 4 | 1 | 12 | . į:
Ž | CZ. | 24 | عرا | 2 | 346 | | 7 | YOA | | | | | | 1. | ، ، ، ، ، ، ، ، ، ، ، ، ، ، ، | | | | | | | | | 111 | | | | | Ŀ | | | | <u> </u> | | | !
! | | | | | ŀ | | | • • | • | - | : | | | | 1: | • | .: | <u> </u> | | <u>.</u> | | | 1 | :
: .::
! | <u> </u> | | | ļ | | •• | | | | | | : | | | | | ļ | | | | | | T | | | | | | | | | | | | | - | 11 | Ø; | E | ٠. | 4 | 97 | ٦ | BA | F | -0 | ۵ | 24 | رک | 70, | PE | | | | - | | | | | | | | | | | | | | | | | | 4 | 12 | 4 | W.A. | 4 | | 7.0 | <u>د</u>
کر | 2.7
) | 10 | ? | 75 | | | | | <u></u> | İ | | | - | | | | | | | | | | | | | 3 | | | | | . و. | | | - .:- | , | | | +- | | | - | 1:1: | | | 1 | - | 1 | : : | | | - | | Ŀ | | | | <u> </u> | | | | ļ | | | - | | - | - | | | | | | | | | | | - | | | | | | **** | - | - | | | | | | | ļ : | | | _ | | | | , | | - | | . l. ;
 | | ļ | | | 13 | _ | o: | | | - | | ļ; | | | | | • - | | | · [] | | | | | | | | | | | | | - 4.2 | | | ::: | | } | | | | | | ļ | L | | | | | | | | | | | | | | | | | | |).:

 *** | | | | | 1 | | | | | | ; | !
 | | , | | | | | 4 | | - | | M | | 9 | 8 | | | | | | | | | | | } | : : | | | : | | | | - | | ا
استار
استار | - | سبب | | | | | | ئنڊ | | - | 1- | | •••••••
• | | <u> </u> | | | : : | | ::i: | - | t | ٠ | - | | موندز
اسمار | _ | | | | | • :
: : | | | | -+ | | | | | | | ļ | | بۇلىدۇ.
ئارىدا | | - | | | | | 111 | | | i | ō, | | | | | !! | | | | - | | | + | | | - | | - | | | | | | | - | | | <u> </u> | : : .
: : . | | | | | | | | | | _ | | | | | - | - | | : | | | + | | - | | | | · · · | - | |
 | | | | | • • • | - 6 | | | : | | | | | | | | - | - | | | 4 | ٠,, | - | | | | - 1 | | | | | | | | | | | | 1 | :: | | - | * | | | | | | | 1 | 1. | | - | - - | - | | 0 | | | | | | | · . | | | | 121.
12.2 | ii | | | | | | | . | | ! | | 9 | € <u>?</u> | 1 | DE | 3. | | | | | | | | | |
 | | | | | | · .: | | | | | |
 | | | | | | | | | | · ; | | !
 | | | | | | | | | | | | | | | | | | ::: | | | | | - | | | i. | | | · į.i. | . ; | 1 | • : | T | | | | | | | | | | | :::: | | | | ! | | | | | | | | 7 | 1 | | ••••• | | | • | | | 1 | | *** | د استو | | | |
:
! | | | - 4 | | -1 | | | | | | | -+ | | | + | | | | | 1 | | 7 | + | · | 1 | | | | | | |
; | | | | | | i | - | - | + | | + | | | | -+ | | + | | · | + | | | + | - | +- | | | | | 表示:"中国,他是是一种,他们是一种,他们是一种,他们也是一种,他们是一种,他们是一种,他们是一种,他们是一种,他们是一种,他们是一种,他们是一种,他们是一种的 Page determined to be Unclassified Reviewed Chief, RDD, WHS IAW EO 13526, Section 3.5 Date: 2 6 APR 2013 | *** | *** | | •••. | | A | /. | ب | <u>/</u> | | | N | O! | २७ | Н | A | M | ER | iC | AN | N A | V | A | ric | N, | IN | IC. | | 7 / | <i>∑</i> - | - 6 | /- | 2 | \$1 | - / | |---|-----|-------|--|-------------|--|-------|-------------|----------|----------|--------|--------------|------|-------------|--------------|----------|--|----------|--|-----|----------|---|----------|----------|-----------------|-------------|-----|----------|-----|------------|--------|------------|--------------|-----------|------------| | C HE- | 641 | | '.
- | | · | |
_ | د | | t | | | | | | | | _ | _ | | | | | · | | | ┪ | | 27 40 | •.
 | - | |
: معم | | | 8A1 | • | 111 | <u>. </u> | ₹ .
 }!! | F | 2 Z | 7,
11) i | 6 | <i>]</i> | 1 | 1100 | 11:1 | | 11:: | 11-11 | : II. | | 11. | T | . 1 | 1 | .; - | <u> </u> | | _ | 1 | بل | ar. | L MG | | <i>5.0</i> | 7 | - | | | | | | | | | H | | 뻬 | | | | | مرا | 7 | 6 | | | | | 2 | | .1 :. | - | i | | |
. j. | • | | ÷ŀ | · · · · · | i i | | 7 | | | | | | | | | | | | | | | Ľ. | | | | ŀF. | | | <u>.</u> | | •••• | | | |
 | | . 1 | | | | | | | | | 4 | | Z | 1 2 2 | | : 1: | | | | 1 | | | | | | | | | | 1 | • | . 1 | | , | - 1 | | | | 4 | Ω | + | - | | | | | | | ļ., | · • • | : 1:: | • • • | : 1 | | | • • | 1::: | | : : | | . 1. | . 1 | | | | | ŧ | 1 . | | V. | - 1 | | • | | | · · · · | | ב עם | 1/2 | | | | | | | | | | | | | | | Ţ. | 1: | | | | | | | | | | # <i>~ .</i> | ; | | | | - | ٦ | | | 2,7 | - | | · ; | • | | | | | | À | // | 2 | 4 | | | Ø | 1 | 2 | ,, | , | | 7,0 | SE | þ | c | W | | 57 | 0 | Q | • | P | ر ۽ | PN. | 156 | w | | | | | 1 |) ::
 -:: | | | | | | | : . | | | - | | 4 | | | -/ | 1 | Ф. | | į | 1 | | | 16 | Z# | | ÆZ, | 4 | i | - | | | | - | | | 1 | 12. | 1 | | | | | 1
1 | | | - | 1 | 7 | 7 | | - | | 7 | - | ;
 | 1 | | | - | | 4 | 1 | - | | | | | | | | | | | | | | | | | | | رح |
ز | | 22 | | | 6 | 2 | | | 1 | | 27, | 4 | 9 | .5 | 70 | | | | | : <u>:</u> | | | | | | | | | | | | | | | | | | • | | | | | | | 1.1. | ļ | ļ: <u>.</u> | | | | | ٠. : | | | | | | | | | | | | | # | | | | | | | 1 | | | | <u>-15)*</u> | ť | 4 | | | | 7 | 7.4 | 7 | 7.6 | | 14 | 4 | er k | 4 | 47 | 70 | | | | | | | | . [1] | + | + | 4 | | | | | ;;;;
 ;; | - | - | - | | - | 5 | | | - | | | " | | | | + | . ::::::: | | | | | | | | | | | | - | | | • | | | | ::: | | | | | 1. | Ú | | 1 | [: | | | + | H | | ľ | 1 | | | | !: [:] | ! | | | | | | | | ۱ء | W | | | | • | 1.11 | | | Ţ | | | | | | i: | | | | شنبه
مهار
مداد | Þ | - | F | | | 1 | | | ::::: | 4 | ille to | 74 | | | | ** | 2 | *** | | | | | | | | | # | + | ** | | | 2.8 | - | . | | | | | + | 9- | - | | | | | 1 | | 4 | | Ţ | | + | 7.7 | | | به | | | | 1 | | | F | - | | 7 | | | | | 7 | !!!!
 | | | | | | | | | | - |)
 | | | - | | 1 | | - | | * | | ¥ | | 1 | | Ī | | | | 8 | ij | | • | 1.,1 | | | | 1 | | | | | | : ; ; | | | <u>:</u> | | | | " į! . | | | | | | | | | | | ļ: | | | | | 9 | | ::
:::: | | | | | | | | | ļ; | | | | | | | | | . : |]. | | | | Ť | | | | | | | | | | | | | :: | | <u> </u> | | 1 | | İ | <u> </u> | - | : | | | | | | 1 | | | | | | | | + | - | | | | | | | + | | | | : | * | | | - | - | | -4 | 9_ | - | <u> </u> | - | _ | | | - ! | 4 | | + | +: | - | 1 1 | | | : : | 4 | | | | | | | 1 | | | ::: | | | | | 1 | | <u> </u> | L | 1 | | | | | | 1 | | | | | 1 | -04 | | W | | # | | | | | | | | | | | | | | | | | | | ١, | | | | | | i. i. | | | | ، بر | المرا | ~ | 0 | 7 | w | | | | | | | | | | | | | | :::: | | | | | 1. | | - | 5 | | | | | | | | 7 | | | | 1::1 | | | | + | - | 7. | N/A | | | • | H | W | 1 | | | | | <u> </u> | | - | | <u> </u> | - | | | | | | ند | * | J. | + | - | | | - | | | | | 4 | - | M | |);;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; | | | 1 | | | | 7.4 | - | | | ** | L | • | | | | | | # | بنند | 1 | - | _ | .;;;; | | | :": | | | | | 4 |)
 | | , | | | į, | + | | q | • | | ! . | | | | | | | 1:: | [| . 1 | | | | 8 | r | - | | Ų | | - | 4 | • | | - T | | | | | | | | T | 1 | , | (8) | | | | | ; ; ;
;;;; | | | | | | | | | | | | Ī | | T | | | | | | : !
::
:::::::::::::::::::::::::::::::: | 1 | | | | - | | 1 | + | | 8 | Š | | | | | | \vdash | _ | - 3 | | - | | | | | + | | - | <u>.</u> . | - | | | | | | :!
- : : | - | | | | | - | 1 | _ | | _ | i | | | | ļ., | | L | | | | ļ | | - | | | - - | <u>i</u> | + | | + | | 1: | | <u> </u> | | | · | | | | | ļ:i | | | 1 | | | | • | ::
:: | | | | | | | | | | • • • | | - | • • • | | | ŀ | • | | | | Page determined to be Unclassified Reviewed Chief, RDD, WHS IAW EO 13526, Section 3.5 Uate: 2 6 APR 2013 | Fire | 4 18 | 41 1 | • | | | | | | = | | | | | | | | | | | | | ION, | | | | 1 | 2/ | 2 | 6 | /- | 18 | 37 | 7_ | ٠ | |----------|-------------|------|----|-----|-----|------|----------------|---|---------------|-----|-------------|------------|---|-----|---------|----------------|------------|-----|--|-----|-----------|--------------|-------|----------|-------------|-----------|---------------|------------|----|-----------------|-----------|-----|------------|----| | | P4.0 | 88 1 | •• | / | 4. | J. | • | | | N | O | RT | Н | A۱ | ME | RI | C | IN | A | VIV | ٩T | ION, | . !! | YC | ;];
 • | • • • | 1 | - 6 | 1 | - | 2.4 | ١, | -/ | / | | | | | • | -
e pe | | | • | • | | | | | | | | 2 | 3 | £ | 2 | 8. | 6 | Ż | Ì | | | | / | | | | | | | | | | | | ╡. | on. | f. N | G | .0 |), ₄ | 25 | زو |
} | 1 | | | | | | | | | | - | | | | :: | | | | | ::: | | ::. | | | | ,
 | | 1. | ::. | | | | | | | | | | | | ::: | | | | | | | | | | C | . | 9 | 1 | 1 | 5 | 37 | 3 | | : ; ;
 | - | - | <u></u> | | | | | | | | + | | | | | | | | 1 | 4 | | | | | | | | | | | | | | | | | QL. | | | | | | | | | 1/ | a | | | | | | ::: | | | | 1.11 | 1 | | | | • • . | 1 *: | • | 1. | •••• | 1 | 1 | 1 | | | | 60 | • | | | | | 1 | | ٠. | | | • • • • | DR
E | | | | | ٠ | | | | | 4 | | | | | | :::: | 497 | | | | | ::: | | | | | | | | | | | 1111 | | 111 | | | | | | | | | | 0 | 4 | | 1 | 4 | | 90 | 7 | | | | | | | - | | | | | | | | | - | | | | | | | | 1 | | | . : | | | - | | ¢ | | | | - | | - | - | | | | | | | | | | 4 | | | ::- | | | | | | | | | | | | | | | |
 | ļ | <u> </u> | | | | | ļ : : : | | | | | | | | | | | | | | 4 | = | 4 | | | | | | | | - | | = | - | | . ; * . | | ļ! | | | | | | | | | | | | | ::: | | | | | | • | X | į, | 7 | • | <u>من</u>
: | | | - | | - | 741 | • | | | | | | W | 7 | 1 | 11 | | 7 | | | ٨. | • | | 5 | 4 | 3.0 | | | | i | | ĺ | | | مزز | 7 | | , | 7 | 15 | | | | | 1 | | | | | | | 1 | / | 7 | - | | 5 | | | :::I | | | | | | # | | - | | C | منز | - | ſ | | | | | 4 | _ | | | ř | | | | | | - | <u> </u> | | - | | 4 | | `\ | | | | | | | | | | 0 | | | | | | | | | | 111 | | | - | | | - | | - | | | | | 7 | | | N | | 7 | - | | | | | | | | # | | | | | ī | | | | | ļ: | | e | _ | ! | | : 1 | | | | | | | | 7 | Z | | 2 | , | ! | | | | | | | | | | .\ | 1 | * | 5. | : :. | | ::: .
:: | | - | | | | 7- T | 6 | | | | | | | | | | - | | | | | , | | | | | | 3 | 7 | 7 | 27 | <u>.</u> | | | .i | | | | | | | | | | | | | | i:-: | | | | | | | | | | | - | - | | | | | | da | | OEZ
PLA | i | | | LAN | 62 | ~ | 4 | ZΑ | ۷. | 4 | | 7 | g. | g | 9 | - | | | | | | | | | | | | | | | | | | | A - | | | 8 | 2 | <i>08)</i> | 26 | | 20 | | ر | E 2 | - | 10 | 45 | ک. | 73U | 54 | | | | | | | | ii | | | | | | | | | l
! | • | | | | | | | | ::: | | . | . | | | | | | : <u>.</u> | | | | | | | | | | | | | | | | Ø | C, | , | | | | | | ::: | | | | | | | | | | | | :: : | | | | | 3 | 6 | | | | | | | | | | | | | .0 | 4 | | | | | | ::: | | | | · | | 4 | 3 | Í | 7 | | | | | | 7 | 3 | | • | L | | | | | | | | | <u></u> | . 1 | | | : : : :
: : : : : : : : : : : : : : : : | | - | 06.5 | - 9 | | | 4 | بر
خر | - | | | 計 | | | | | | 1 | 44 | Q | | | | iri
Pir | | - | | | | | | | | | | | | | | | | | 7 | | 4 | 2 | | | 4 | | | | | 4 | ٥. | • | | | | | | . | | | | | | : | : | . ;
; | | | | 4 | . | | 4 | 7 | | 4 | 12 | | | | 1 | • | | | | | | | | :.: | ::: | | | | ļ | | | | | ::: | | | | | | | | . : | | | | | | | | • • | | | | | | | | | | | | | | | | | - | | | | ••• 7 2 | ø | | | ! | - | | : | | | 1 | | 1 | | | | | | | | <u> </u> | ال | | : | | .:: | نينا | | | | L : | | <u> </u> _ | | L . | | | | ن ا | | | | | | | | ا | | _ L | | | | | . i i | | Page determined to be Unclassified Reviewed Chief, RDD, WHS IAW EO 13526, Section 3.5 Uate: 2 6 APR 2013 | ft:44 . | .,. | | | | | | | | | | | | | | | | | _ | | | | · | | | 21 | 0. | <u>-6</u> | 1- | - 18 | 98 | |---------------------------------------|------------------|--------|---------------------------|--|----------|--------------|----------|----------------------|------------|-------------------------|----|------------------|------------|----------------------|---------|------------------|-----|--------------|---------------------------------------|------------|-------------------|--------------|-------------------|-------------|--------------|----------|--------------------------|-------------|--------------|---| | 271145 | | AT | , | e. | 5/ | V | • | | 1 | 10 | RT | Ή | A | ME | RI | C | N | A | VIA | TIC | M, | IN | C . | 7 | / <u>/</u> / | ٠ ﴿ | 5/ | a
L | 5 | -/2 | | |) ts # | | | -• • | | · | | • 1 | | | | | | | | | | | | | | | | | ost : | • | • | | • • | | | | | FL | | |
لز 2 | | 61 | | Ι- | | | | | | | ****** | | | | | | | | | | . < | 3 0 |). <u>"</u> | ? 5 |
33 | | | | 1 | T | Ī.; | I | | | | | | | | | i | | | 1:: | :
 | 12.7 | Ŀ | | | T | | | | : | | | 1 | | ٠٠٠ | - | | | | - | 1 | - | <u>.</u> | 1 | 11 | | • | 1 | | 4 | 2 | | | 73 | . | : | | +. | | | | | | | | | S | | 74 | | 7.4 | 3 | ez. | 774
* | 72 | برد
را2 | | | S. | Γ | | | S | 22 | 41
24 | VIN | 19
19 | J\$7.
1.26 | OM | <i>ፋ ፣</i> | N)
D | | 04 | <i>جر</i> ج | | <i></i> | FW. | | du a | | | | | 1 | 1 | 2 | Å | بزايا | M | ۶. | 53 | 75 | 6 | 20 | 7. | 42 | برح | -16 | Ż | 1 | 1121 | *, | 47,1 | 12 | | | | • : | | | . | | | | - | | <u>†</u> . | - | - : - | 1 | 7/ | V | | 9- | • | · | 7 57 | 150 | 14 | 47 | 9, | | | - | | - | ÷+ | | | | j | | - j- | - | ·
- | - | <u>. </u> | +- | | + | !.
- ! | - - | 11. | | <u></u> . | += | <u> </u> | 2 | 4 | 4: | 1 | 80 | | ·
 | | | | | | | | | | | · · · · · · · · · · · · · · · · · · · | | ; · · | | | L
| | | · · · · | | :::
- - | | | Ŀ | | | | | . | | | . i
<u>. i</u> | | 1_ | : | | | ; | | · | ø | | | | | | | | | | 1 | | | | | ļ., | . <u>;</u> . | | ;
,,, | | | | : | | | | | | | . ; | . | أأأمر | 10 | | | | | | | | | | | | | | | 1 | | 1 | | | | ··· | | : | | - | - | | | - البلد
م امهم | | بر
مردیم | 9 | | | | - | | | | <u> </u> | | | + | | - | <u> </u> | | / | - | - | | <u>_</u> | - | | •• •• ••
: | - | | ارون | | | مد <u>مہ</u>
مئے | - | | mÆ! | | | - | | | | | | | : :::
: : | | | | 1. | 1 | • | - | | _ | ··· | | <u> </u> - | T | | س | - | يمغنا | | ا آسم
نوعبر | ا
المنار | · | | | | :: | | | | | | | | | | ŀ | ;
 | | !! : ;
<u>!</u> _ | Ľ | | | | | سم | امیماد.
معید | سير | 7
مسئل
سمسا | ار
سازور | سمسم | Ī., | | |
! | | علا | | | سور.
موسم | | | | | | | - | | | | | 5 | *** | | 1 | 2 | | | 1 | • | | + | ,
,
, | 1 | سنبار
داشتار | 现 | رس | | - 16
- 16 | | * | | | 0 | | | 7 | 2 | + | | <u> </u> | | | | :1, | | | | | 1:: | <u> </u> | | | | تسد
نزم | Į, | | | - T | | | | <u> </u> | | ļ <u>.</u> | - | | | | 7 | | !!. | [-]- | | | | | | Ш | | | منا | | بنإ | بر | 1 | مه | | <u> </u> | Ĺ, | ·
 | L | | | <u> </u> |
[] | ·" : | | · · · · | | * | 16 | 9 | 1 | | | | | | | خبرا | مبن | بر | مر ا | منه | F | | | | | | .,. | | | | No | | :
و م | i. . | | | - | | | | | | | σx | | فمر | | مر | 7 | ď | | • | | 1 | | | ļ, | | . , , , | | | | | 1) | D | ATA | B | 95 | EΩ | 4 | ببه | 57 | are | | | == | | | 1 | | 1 | 7 | ſ | | + | - | + | <u>بنا.</u>
أ | 1: | | 4 | R | - | , <u></u> , | | \vdash | P | LE | 12 | طار
وزير | 2 | | 6E | 74 | LS4 | ET, | | | | _ | برا | / | 4 | | | | - | 1:: | | | - | | _ | | | | - | _ | | | e . | • | | | | | | | | ۵. | | 1 | 1 | | | | Ľ. | | | | | | | | | | | | | 2 | | رت.
محمرا | | 724 | 1 | ا
مر | TH. | 1 | √2 2_ | STO | | 3" | 1 | 1 | | | | | | | | | | | | | | , , | | | | 3, |) 4 | AZZ | 2.4 | IN | 24 | 4 | 2 <i>E</i> | 1 | ; ; | | | - 20 | 1 | | | | | | | 1 | Ĺ | . | | | - | | | | | | . ; | | 4 | EZA | 5 | <i>.</i> | | 4 | حنبك | # | ee. | 2.64 | | | | - | | | | | | | - | + | | 1 11 | - | 1 | | | | | | - | | 1. It is | | | | - | | | | | | | - ! : | | | | | | | 1 | | 111 | 1 | i | ļ | | | | | | | | | ····· | <u> </u> | | | | ۰۰۰
نبا زن | 1 | | | | or | | - | | - | | | | | | | | 4 | 5 | 7. 4 | 0.1 | | | | • • • • • • • • • • • • • • • • • • • | | | ••••••• | | | | | | | | | | 14" | | | ,,, | - | **** | | | | | | | - | | | | | i | | | | | | | | | 1 | | <u> </u> | | | | 4 | <u>سر</u>
لمر | - | ٠ | | | | | | - | 1. | - | | | | | | | - | | 2. | - | · · · | - | | | 十 | | + | | <u>, </u> | | 3 | - | | :: '!
!:. | | | | | · · · · | Ľ | | - | | | | | _ | | | ~ | | | | | ķ | 2 ~ | 1 | 25 | 4 | ::" | | | | | | : | | ::: | | | | Ŀ | | | . : | Ŀ | | ٠ | ا .
امر | | |] | | 1 | | | - | | + | | + | | Q=S | | · T · T | | | | | 1 | - | | | 1 | , | T | | - - | | -10 | 71 | | + | | | | | 1 | | | 7 | | + | | | Page determined to be Unclassified Reviewed Chief, RDD, WHS IAW EO 13526, Section 3.5 Uate: 2 6 APR 2013 #### CONFIDENTIAL #### APPENDIX B PRELIMINARY DESIGN OF AN AIRBORNE UNIVERSAL EXTERNAL STORE FOR LINE SOURCE DISSIMINATION OF LIQUID BY AGENTS Conducted Under General Mills, Inc. Purchase Order No. MD-78766 Ву North American Aviation, Inc. Los Angeles, California PERMIT Serial No. File No. Report No. #A-61-758 ## NORTH AMERICAN AVIATION, INC. INTERNATIONAL AMPORT LOS ANGELES 45. CALIFORNIA ENGINEERING DEPARTMENT THE PRELIMINARY DESIGN OF AN AIRBORNE UNIVERSAL EXTERNAL STORE FOR LINE SOURCE DISSEMINATION OF LIQUID BW AGENTS #### PREPARED BY - Aero-Thermo Special Projects APPROVED BY P. Greene, Manager Research and Development REVISIONS Date 3 July 1961 | No. of Pages | 32 | REVISI | ONS | Dute 3 outly 1301 | | |---|--------|--|---|--|--| | DATE | REV BY | PAGES AFFECTED | | REMARKS | | | ا هما الراح من المنظمة المنظمة
المنظمة المنظمة | | and the same of th | | | | | | İ | ه د د مسهورها | | | 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - | -/ with a second of the | | | | | | | | | **DECLASSIFIED IN FULL** Authority: EO 13526 Chief, Records & Declass Div, WHS Date: 2 6 APR 2013 32 LOS ANGELES 45, CALIFORNIA #### COMMODISM NA-61-758 Page 1 #### ABSTRACT TITLE: The Preliminary Design of an Airborne Universal External Store for Line Source Dissemination of Liquid BW Agents. AUTHOR: Marshall H. Roe, Aero-Thermo Special Projects This report presents generalized aerodynamic, weight, and inertia characteristics of a universal external aircraft store for dissemination of liquid biological agents. These data were prepared to examine compatibility of the store with an Army surveillance drone. Also included are the results of a configuration study preliminary to detailed engineering design of the store. #### DESCRIPTIVE TERMS Biological warfare External stores for aircraft Line-source dissemination General Mills, Inc. Liquid BW agents BW/CW #### FOREWORD The studies described in this report were conducted in accordance with Amendment 2 of the General Mills, Inc., Contract MD-78766, subcontract to Army Chemical Corps Contract No. DA-18-064-CML-2745. The study period was from 13 February 1961 through 26 May 1961 DECLASSIFIED IN FULL Authority: EO 13526 Chief, Records & Declass Div, WHS Date: 2 6 APR 2013 | COMPRESIDE | NA-61-758
Page 11 | | |--
---------------------------------------|---| | TABLE OF CONTENTS | | Page | | ABSTRACT | · · · · · · · · · · · · · · · · · · · | 1 | | FOREWORD | المستقد وساست الرازان | . · · · • • • · · · · • · · · · · · · · | | TABLE OF CONTENTS | | 11 | | LIST OF ELLUSTRATIONS | | 111 | | LIST OF TABLES | | 1v | | INTRODUCTION | | 1 | | DISCUSSION | | 2 | | Generalized Store Data for Drone Compatibi | lity Study | 3 | | Aerodynamic Characteristics | | 3 | | Weight and Inertia Characteristics | | 4 | | Design Parameters for Manned Aircraft Stor | ·e | 9 | | Geometrical Parameters | | 9 | | Preliminary Structural Design | | 10 | | Agent Tank Design | | 16 | | Heating and Insulating | | 16 | | Pump and Nozzle Assembly | • | 17 | | Turbine-Generator | | 17 | | Controls | | . 18 | | Filling and Decontaminating | | 19 | | reperences . | | 20 | 之中,我们是一个人,我们是一个人,我们是一个人,我们是一个人,我们是一个人,我们就是一个人,我们就是一个人,我们就是一个人,我们就是一个人,我们就是一个人,我们 # NORTH AMERICAN AVIATION, INC. INTERNATIONAL AMERICAN LOS ANGELES 48, CALIFORNIA | | NA-61-758
Page 111 | · · · · · · · · · · · · · · · · · · · | |------------------|---|---------------------------------------| | - | LIST OF ILLUSTRATIONS | Page | | Figure
Number | Title | Number | | 1. | Generalized Liquid Agent Store Aerodynamic
Dimensional Data | 21 | | 2. | Dimensional Characteristics of a Generalized Liquid Agent Disseminating Store | 22 | | 3. | Isolated Store Estimated Aerodynamic
Characteristics Lift, Drag and Pitching
Moment | 23 | | 4. | Isolated Store: Estimated Acrodynamic Characteristics, Lift Coefficient-Finned Configuration | 24 | | 5. | Isolated Store Estimated Aerodynamic Characteristics, Drag Coefficient-Finned Configuration | 25 | | 6 . | Isolated Store Estimated Aerodynamic
Characteristics, Pitching Moment Coefficient-
Finned Configuration | 26 · | | 7 | Weight and Inertiz Characteristics of a
Generalized Liquid Agent Disseminating Store | 27 | | 8, | Store Installation, EW Study | 28 | | 9. , | Insulation Effectiveness | 29 | | 10. | Agent Temperature History | 30 | | 11. | Heating Required for Disseminating Booms | 31 | | 12. | Electrical Schematic BW Study | 32 | # NORTH AMERICAN AVIATION, INC. INTERNATIONAL ALMOST LOS ANGELES 45, CALIFORNIA #### COMMISSION NA-61-758 Page iv | | LIST OF TABLES | Page: | |--------------|--------------------------------------|--------| | Table Number | Title | Number | | ı | Weight, Inertia and Balance Summary | 5 | | II | Weight Summary for Tank #1 (50 gal) | b | | III | Weight Summary for Tank #2 (125 gal) | 7 | | IV | Weight Summary for Tank #3 (190 gal) | 8 | DECLASSIFIED IN FULL Authority: EO 13526 Chief, Records & Declass Div, WHS Date: 2 6 APR 2013 是非常的,我们是是一种,我们也是一个,我们是一个,我们是一个,我们是一个,我们是一个一个,我们是一个一个,我们是一个一个一个一个一个一个一个一个一个一个一个一个一 INTERNATIONAL AIRPORT NA-61-758 Page 1 #### INTRODUCTION North American Aviation, Inc., is participating as a subcontractor to General Mills, Inc., in an Army Chemical Corps program to develop external stores for the line source dissemination of liquid and dry BW agents. NAA has completed the phase of this development program of design studies of a universal liquid agent dissemination store for use with operational manned aircraft. The present work is concerned with examining the compatibility of the Army SD-5 surveillance drone with a liquid agent store, and proceeding with the preliminary design of a prototype store. It is planned that the detailed design and fabrication of the prototype store will follow review and approval by GMI and the Biological Laboratories of the preliminary design resulting from this phase of the program. 张祖宗是是李林林中,他们是一种,他们是他们的一个,他们是他们的一个,他们也是他们是他们是他们是是一个一个,他们也是一个一个一个一个一个一个一个一个一个一个一个一 NA-61-758 Page 2 #### DISCUSSION The scope of the work covered by this report is defined by the work statement of Amendment 2 of GMI Contract MD 78766, which is quoted below: - '1. Complete the design requirements for a prototype external store liquid agent dissemination system. The results already obtained under this contract with General Mills, Inc. shall be used. The design requirements to be established shall apply insofar as possible to a universal store; however, detailed design shall consider installation of the store on the AN/USD-5 drone and also the F-100D airplane, which is anticipated as a test vehicle. - a. As part of this work, data shall be submitted to General Mills, Inc. for purposes of evaluating compatability with the drone. These data shall consist of preliminary aerodynamic, weight and inertia characteristics. - b. Coordinate with General Mills, Inc., the Army Chemical Corps, and the drone manufacturer in establishing a mutally acceptable store configuration at General Mills, Inc. direction. 宝宝 - o. Preparation of Layout Drawings Layout drawings of the external store shall be prepared, which shall include external geometry, definition of components (such as turbine, generator, valves, pumps, nozzle assembly and actuators), controls and control sequencing, jettison provisions, agent capacity, insulation, agitation and heating and maintenance provisions. - 2. Prepare a reproducible technical report covering the work under Item 1 above." Upon completion of items la and lb, NAA was redirected by GMI to eliminate any further consideration of store compatibility with the USD-5 drone as required by item 1. LOS ANGELES 45, CALIFORNIA #### COMMENT NA-61-758 Page 3 ### GENERALIZED STORE DATA FOR DRONE COMPATIBILITY STUDY For purposes of a comparative evaluation of store characteristics versus drone capabilities, aerodynamic, weight, and inertia characteristics as a function of store size were prepared. These data are based on the store configuration as shown in an earlier proposal report, reference 8, and reflect a somewhat heavier empty weight than the store that has evolved from the present work. Geometrical data defining the generalized store are shown in rigures 1 and 2. A fineness ratio of 0.5:1 was chosen since it has an adequately high orag - divergence Mach number as well as adequate capacity. The stabilizing fins shown are optional, depending on the need for reduction or the destabilizing effects of the stores and for free drop jettisoning of the Stores. #### Aerodynamic Charactersitics Aerodynamic characteristics consisting of lift, drag, and pitching moment coefficients for the isolated store are shown as a function of Mach number and angle of attack in figures 3 through 6. The isolated store aerodynamic characteristics consisting of lift, drag and pitching moment coefficients of the finless configuration were initially estimated on the basis of data contained in reference (1) which dealt with the high subsonic Mach number wind tunnel testing of a similar external store model. The fins-on data were also derived from the above referenced report with necessary corrections made for the fin effects. A North American report, NA-55-1108, was also referenced in the comparison of the body alone (finless) data. (These initial data were forwarded to GMI by cover letter and later revised by , wire.) Subsequent analysis of the drag data in the referenced Douglas report and a comparison of those data with data in references (3), (4) and (5) indicated that the drag data of references (1) are optimistic, probably because of improper corrections for the base drag. All of references (3), (4) and (5) show the low speed zero-lift drag level of 0.05 of a fins-off low-drag body similar to the store shapes concerned now; particularly, the configuration #7 in reference (3) is almost the exact shape. Therefore, the initial drag estimate was revised to that shown in figure 3, which gives a drag coefficient of 0.05 at low speed, zero lift. Effects of angle of attack and fins on the store drag remain the same as estimated from reference (1). DECLASSIFIED IN FULL Authority: EO 13526 Chief, Records & Declass Div, WHS Date: 2 6 APR 2013 LOG ANGELES 45, CALIFORNIA #### COMPLETE NA-61-758 Page 4 ## Weight and Inertia Characteristics Weight and inertia data are shown as a function of agent capacity in figure 7. These data were estimated from an arrangement as depicted in NAA drawing No. 2521-900001, as shown in reference 8. Using this configuration as a reference model, variations in tank capacity and geometry were established and are identified in the following manner. Tank No. 1 50 Gals Agent Capacity Tank No. 2 125 Gals Agent Capacity Tank No. 3 190 Gals Agent Capacity Since the preliminary design phase did not include detailed design information, the structural weights were estimated from previous North American Aviation tank configurations. Weights for the secondary power supply and pumping equipment were obtained from equivalent off-the-shelf units and hardware items. A summary of weight, C.G., and inertia data is shown in Table I below. Weight build-ups for the three stores are shown in Tables II through IV. LOS ANGELES 44. CALLIFORNIA #### CONFIDENTIAL NA-61-758 Page 5 #### PABLE 1 #### WEIGHT, INERTIA AND BALANCE SUPPARY 1 | COND | OFFICE | Veicht
Les | i
Tank sta
Inches | | RCLL
RCLL
RLUG FT ² | FIFCE
SLUG FT | Is
TAN
SLOG FI | stud 712 | |-----------|--|-----------------------------|-------------------------------|------------------|--------------------------------------|----------------------------------|----------------------------------|----------------------------------| | Tank #1 | . (50 CALS) | - 19.3 IN | iches wax i |)IA, 165 | Incers II | ngth | | | | Empty-Boo | cus Retr.
" Ext.
" Retr.
" Ext. | 499
499
916
916 | 70.5
70.2
68.9
68.7 | 2
9
1
5 | 5.3
7.6
8.0
10.4 | 182.8
180.0
225.8
222.9 | | + 1.4
- 6.4
+ 1.4
- 6.5 | | TARK 12 | (125 dALS) | - 23.5 I | ICHES NAX | DIA, 200 |) incers i | enote (1 |
25 CALS) | | | Empty Foo | metr. Ext. Retr. Ext. | 649
649
1691
1691 | 90.0
89.7.
88.2
88.1 | 1
7
0
3 | 12.9 | 345.1
361.2
550.7
546.8 | | - 2.5 | | Tank #3 | (190 dals) | - 26 IBC | res max di | A, 220 I | ucese frá |)TH | | | | Empty-Boo | Ext.
Retr. | 736
.736
2319
2319 | 99•3
99•0
97•7
97•6 | 1
6
0
2 | 17.3
34.3 | 457.8
453.8
893.2
889.2 | 457.9
451.4
893.3
886.7 | - 2.h
- 8.6
- 2.h
- 8.7 | ### INERTIAS ARE ABOUT AXES PASSING TERU OR AND PARALLEL TO REFERENCE AXES ACAMIDETITIES LOS ANGELES AS CALLFORNA NA-61-758 Page 6 #### TABLE II #### WEIGHT SUMMAY FOR ### THE \$1 (50 CAL) | TOM | WT-LBS | |--|------------------------| | Body Group (Outer Shell Struct)
Fine
Insulation
Tank Assembly | 166
10
11
155 | | Power Supply
Turbine Assembly
Generator Assem (Incl Supts)
Electronic Prov. | 25
X0
1N | | Spray Provisions Pumps & Piping Boom Assem. Actuators & Controls Indicators & Controls | 12
30
13
5 | | мтвс. | 18 | | TOTAL TARK ASSEMBLY (EMPTY) | ' 49 9 | | ACENT 50 GAL | 417 | | TOTAL TANK ASSEMBLY (INCL. AGENT) | 916 | かる (なるない INTERNATIONAL AIRMANY LOS ANGELES 48, CALIFORNIA NA-61-758 Page 7 #### TABLE III ### TANK #2 (125 GAL) | ITEM | WT-LBS | |-----------------------------------|----------| | Sody Group (Cuter Shell Struct) | 210 | | Tine | 14 | | Insulation | 18 | | Tank Assembly | 245 | | Power Supply . | | | Turbine Assem | 25 | | Generator Assem (Incl Supts) | 40 | | Electrical Prov | 15 | | Spray Provisions | | | Parge & Piping | 14 | | Nove Asses | 30
13 | | Astustors & Controls | 13 | | Indicators & Controls | 6 | | MISC. | 19 | | TOTAL TARK ASSEMBLY (EMPTY) | 649 | | AGENT 125 CAL | 1042 | | TOTAL TANK ASSEMBLY (INCL. AGENT) | 1691 | LOS ANGELES 46, CALS ORNIA #### SOLUTION NA-61-758 Page 8 #### TABLE IV #### VEIGHT BURNARY FOR #### TANK #3 (190 GAL) | ITEM | HT-LIE | |--|-------------------------| | Body Group (Outer Shell Struct)
Fine
Insulation
Tank Assembly | 950
- 16
21
28 | | Power Supply Turbine Assem Generator Assem (Incl Supts) Ricetrical Prov | 25
40
15 | | Spray Provisions Pumps & Piping, etc. Boom Assem- Astunture & Controls Indicators & Controls | 16
20
13 | | MISC. | 50 | | TOTAL TARK APSEMBLY (EMPTY) | 736 | | AGEST 190 GAL | 1583 | | TOTAL TARK ASSEMBLY (INCL AGENT) | 2319 | NA-61-758 Page 9 ### DESIGN PARAMETERS FOR MANNED AIRCRAFT STORE Following the decision by the Biological Laboratories to delete the requirement for store compatibility with the SD-5 drone, design requirements for the prototype store for manned siroraft were determined and applied in the design , layout shown in figure 8. A discussion of these requirements follows. #### Geometrical Parameters In establishing the overall store dimensions the following criteria were considered: - The store should be capable of operational demonstration on the first-line tactical aircraft (fighter-bombers, ground support types) of the Air Porce, Navy, and Marine Corps. - Since area coverage requirements have not been established by the using commands, the amount of agent to be carried was assumed to be the maximum possible, consistent with the requirement of item (1) above. and F, F-105B and D, B-66B, A3J-1, PJ-4B, and the A4D. Reference 6 shows the following capabilities of these partioular aircraft. | Airplane | Store
Station | Puel Tank
Capability | Store Weight Capability | Lug
Spacing | |--------------|------------------|-------------------------|-------------------------|----------------| | F-1000,D & F | 106 in. | 450 Gal. | 3170 16. | 14,20,30 in. | | F-105 8 & D | 0 | 450 | 3170 | 30 | | | 138 | 450 | 3170 | 30 | | B-66B | 254 | 450 | 3200 | 30 | | A3J-1 | 110 | 400 | 4000 | 30 | | PJ-4B | 122 ′ | 344 | 2450 | 14,30 | | A4D | o ` | 300 | 3575 | 14,30 | **DECLASSIFIED IN FULL** Authority: EO 13526 Chief, Records & Declass Div, WHS Date: 2 6 APR 2013 #### COMPONE NA-61-758 Page 10 From consideration of these capabilities evolved the store geometry of 226 in. length, 26 in. diameter, 190 gallon volume of agent tank, and 30 inch lug spacing. #### Preliminary Structural Design The structure of the BW Store, as shown on NAA drawing 2533-900001 figure 8, was based on the following preliminary loads analysis. Air loads used in this study were based on a 275 gal fuel tank which is similar to the proposed BW store. The amount of inertia for the 275 gal fuel tank was also used as a basis for the external shell of the BW store. The inner tank values were computed and incorporated into the overall results which were the basis for the design consideration made. Following is a discussion of the loads used and the method of analysis. #### Symbols 是在一种,我们也可以是一种,我们也是一种,我们也是一种,我们也是一种,我们也是一种,我们也是一种,我们也是一种,我们也是一种,我们也是一种,我们也是一种,我们也 第一种,我们也是一种,我们也是一种,我们也是一种,我们也是一种,我们也是一种,我们也是一种,我们也是一种,我们也是一种,我们也是一种,我们也是一种,我们也是一种 - W = weight of store including all disposable loads, lbs. Nx = load factor in fore-and-aft direction My = load factor in lateral direction Nz = load factor in vertical direction $\ddot{\theta}$ = pitching acceleration, rad/sec² Y = yawing acceleration, rad/sec2 os = angle of attack of store, degrees β_8 = angle of sideslip of store, degrees $q = 1/2/9V^2$, dynamic press 1b/ft² $P = air density, slugs/ft^3$ V = air velocity, ft/sec LOS ANGELES 45, CALIFORNIA -COLUMN TO THE NA-61-758 Page 11 BW Tank 30" Lug Suspension Outer tank At = 300# Estimate based on data I, = I $_{\rm Z}$ = 475,000 lb-in²)for 275.gal fuel tank Ifner Tank: Mt of Tank = 100# Iy = I $_{\rm Z}$ = 2,470,000 lb-in² Total Wt = 209 lb = 1630# Total Wt = 200 lb ### **CONFIDENTIAL** NA-61-758 Page 13 Inner Tank Satimate I_y and I_z Assume Cylinder 22" dia x 129" long Wt = 1730 lb. $M = \frac{1730}{380} = 4.5 \frac{1b. \sec^2}{in}$ $$I_y = I_z = M \left(\frac{r^2}{4} + \frac{1^2}{12}\right) = 4.5 \left(\frac{11^2}{4} + \frac{129^2}{12}\right) = 6300 \text{ lb. sec}^2 \text{ in.}$$ $$I_y = I_z = 6300 \times 386 = 2,470,000 \text{ lb. -in.}^2$$ Locate Composite C.G. of Inner, Tank, Outer Tank and Liquid. Outer Tank: 专题: "他是我 医多次型 This is 人名英格兰 计记录系统 医全性性 医生物性 化二氯 Assume C.G. at Sta. 110 Wt. = 300 1b. Inner Tank C.G. at Sta 30+34_33.2 = Sta. 97.2 Wt - 1730 lb. $$\chi_{i} = \frac{300 \times 100 + 1730 \times 97.2}{1730 + 300} = 99$$ " (Sta. 99) Use tank sta 100 as 0.0. Air load reference point is at .4 x 220 = Sta 88 For symmetrical lugs shout tank 6.0. lugs should be a For symmetrical lugs about tank C.O. lugs should be at Sta 85 and 115 use sway brace angle of 20° per spec. MIL-A-85918(ASD) Reference 8 inertia moments at C.G. for external tank only My = 1y8 = 935000 = 25200 Mz = 2520 % for inner tank My = 2.470.000 = 6300 & Mz = 6300 % DECLASSIFIED IN FULL Authority: EO 13526 Chief, Records & Declass Div, WHS Date: 2 6 APR 2013 NA-61-758 Pago 14 Limit Load Factors (Reference MIL-A-8591B) ⇒ 2030 lbs (estimated) | Inertial | Is | , 2* | 3* | ARR Ldg | Catapult* | |------------------|------|-------------|------|----------|-----------| | Nz | 8.67 | 4.0 | 6.0 | +3 or -1 | +3 or -1 | | и <mark>х</mark> | ±1.5 | ±1.5 | ±5.0 | ±1.5 | ±1.5 | | N _x | ±2.0 | +5.0 | ±2.0 | 9.0 | -9.0 | | ង | ±6.0 | ±6.0 | ±6.0 | ±12.0 | ±12.0 | | <u> </u> | 0 | 0 | 0 | <u> </u> | ±4.0 | #### Signs +0 +N₂ Down Nose Up +Ny Left Nose Left +N_X Fwd · 图14年1日 - 14年1日 1 #### *Max Design Limit Load Pactors from Page 11 of MIL-A-9591B (ASG) Air Loads For a 275 Gallon Tank from NA 52-186 (Reference 9) Condition 380R (M .90 at 3000 ft., $q = 980 \text{ lb/ft}^2$) $P_z = 653 \text{ lb.}$ $P_y = 1490 \text{ lb.}$ $M_z = 66282 \text{ in. lb.}$ My = 9611 in. 1b. Pz = 1293 lb. Condition 329R (M .96 at 3000 ft., $q = 1220 \text{ lb/ft}^2$) P2 = 764 1b. $P_y = 1472 \text{ lb.}$ $M_z = 52716 \text{ in. lb.}$ My = 9545 in. 1b. Py = 1881 1b. Condition 3008 (M 1.10 at 10000 ft., $q = 1220 \text{ lb/ft}^2$). $P_{x} = 982 \text{ lb.}$ $P_{y} = 781 \text{ lb.}$ $M_{y} = 59079 \text{ in. lb.}$ $M_{z} = 98161 \text{ in. lb.}$ $H_{\mathbf{y}} = 59079 \text{ in. 1b.}$ $P_{\mathbf{x}} = 2821 \text{ lb.}$ For Negative condition, use condition 420 multiplied by 1.44 Frequency condition, use condition (for 1220g) $P_{x} = 99 \times 1.44 = -143 \text{ lb.}$ $M_{y} = 85389 \times 1.44 = -123,000 \text{ in. lb.}$ $P_{y} = 608 \times 1.44 = -875 \text{ lb.}$ $M_{z} = 35420 \times 1.44 = -51,000 \text{ in. lb.}$ $P_{x} = 750 \times 1.44 = 1080 \text{ lb.}$ LOS ANGELES AS GALIFORNIA NA-61-758 Page 15 F100A Airloads for q = 122019/ft2. For 275 Gal Tank | (| Condition 4 | Pg | My | Py | Mz | Px | | |---|-------------|------|---------|------|--------|--------|---------| | - | 1042 | 560 | -83619 | 640 | 147242 | 2271) | • | | | 3008 | -982 | 59079 | 781 | 98161 | 2821) | Pos. Ng | | | 324R | -754 | 4545 | 1472 | 52716 | 1881) | | | | 420 | 1,43 | -123000 | -875 | -51000 | 1080 | -Neg Ng | Combine Airload Condition 1042 With Inertia Condition 1 1042 3 #### For Condition 1 and 3 #### Condition 2 | · - | | | | | |--------------------|---------|-----------|------------------------------------|----------------------| | Max Verbical Loads | on Pwd. | Frame for | -N _X , - ' 6 | +N _X , +6 | | Max Horizontal " | 11 11 | 17 11 | +N _y + ¥ | -N _{yl} - ¥ | | Max Vertical " | " Aft | er fr | +N _X +6 | -N _z -'0 | | Max Morisontal " | ff 11 | 10 11 | -Ny - 🍎 | -N _y - ¥ | | Condition | Dash
No | Nx | Хy | ö | ** | |-----------|------------|----|----|---|----| | | -1 | • | + | - | + | | | -2 | + | -4 | + | - | | 5 | | + | - | + | 4 | | | -2 | - | + | - | - | | 3 | -1 | • | + | • | + | | | -2 | + | - | + | - | #### * Condition 1042 is a symmetrical flight maneuver without pitching acceleration 3008 is an unsymmetrical flight maneuver,
steady roll 3242 is an unsymmetrical flight maneuver, steady roll 420 is an unsymmetrical flight maneuver, abrupt roll > **DECLASSIFIED IN FULL** Authority: EO 13526 Chief, Records & Declass Div, WHS Date: . 2 6 APR 2013 #### **CONFIDENTIAL** NA-61-758 Page 16 #### Agent Tank Design The selection of a filament wound fiber glass agent tank was based on considerations of strength (safety), corrosion, weight, sealing, desontamination, heat transfer, and producibility. The Lastex Corporation of Farmingdale, M.Y., was consulted on design, fabrication, and structural testing of this unit. Other materials considered, but rejected in favor of the filement wound fiber-glass were: aluminum alloys, stainless steel, self sealing cells, blader cells, and honeycomb finerglass. #### HEATING AND INSULATION のできる。 1987年 - 19874 To fulfill the requirement of maintaining the temperature of the liquid agent within 35°F to 70°F, the agent tank is insulated and the nossle and plumbing components are heated. The heat transfer characteristics of the BW store are a function of the outside film coefficient, the amount of insulation, the heat capacity, and film coefficient of the agent. The effect of the insulation is to negate the effect of the outside film coefficient. Figure 9 shows the effect of various thicknesses of fiberglass batting insulation on agent temperature after a three hour exposure at 43,000 ft cruise altitude with a ram temperature of -7°F. As can be noted, the change in agent temperature is insignificant for insulation thicknesses in excess of 1/2 inch. However, when the store is partially full as shown on figure 9, the agent reaches its limit sconer, as the heat capacity is not available in the agent. A time - temperature history for agent temperature with a 1/2 inch thick insulation and only 25 gal. of agent in the store is shown on figure 10. This surve assumes that the starting agent temperature was 40°P and the airplane was cruising above 35,000 ft with a ram temperature of -7°F. As can be noted, the agent will reach 35°F after 105 minutes. With the full tank of course, the agent temperature did not approach 35°F in three hours. The amount of heat required to maintain the temperature level of the disseminating booms above freezing is a function of the ambient temperature, sirplane speed and the film coefficient of the booms. Figure 11 graphically "llustrates the heating requirements for the most pritical condition of maintaining the extended disseminating booms at 35°F for a LOS ANGELES 48. CALIFORNIA #### COMPONENTAL NA-61-758 Page 17 sea level run. The ordinate of figure 11 is the 85% ram recovery temperature, which is a function of both ambient temperature and airplane speed. The heating required will vary then in relation to the ram temperature and the airplane speed. These values are also related to the ambient temperature which is cross plotted on the curve. A review of the minimum temperature for likely target areas indicates that -40°F is the lowest temperature that need be considered. Reference to figure 11 indicates that a heating density of 8 watts per square inch will be adequate for all airspeeds of approximately 0.7 Mach number and higher. It can be seen that 8 watts per square inch will provide satisfactory heating at any speed for ambient temperatures of -28°F or higher. #### Pump and Norsle Assembly **地名阿拉比亚西班牙斯 电影的人的人们是在他们的人们** The design flow rate of the dissemination system has been taken as 18 gallons per minute in accordance with the findings of reference 6. The pump selected is nominally rated at 20 gallons per minute at 50 psi. An adjustment of plus-or-minus, two gallons per minute is provided so that the desired rate can be set during bench tests. The nozzle design is based on earlier test results as reported in reference 7. On the basis of that information the nozzle assembly incorporates 50 individual slit-type orifices, 0.360 inches in length and 0.005 inches in width. This will result in a flow rate of 18 gallons per minute at approximately 35 psi at the nozzle. #### Turbine-Generator Analysis of the electrical load imposed on the generating system indicates that a 4 KVA output is adequate. Estimated requirements for the various electrical components are listed below. Pump 2.16 KVA Actuator 1.15 KVA Boom heaters 1.32 KVA max (boom extended) Flow line heaters 0.34 KVA max Valve and plumbing heaters 0.60 KVA max Solenoid valves(per valve) 1.00 KVA starting, 0.06 KVA holding ACCUMENTAL. DECLASSIFIED IN FULL Authority: EO 13526 Chief, Records & Declass Div, WHS Date: 2 6 APR 2013 _CONTRIBUTIAL- NA-61-758 Page 18 The functioning of the controls, as described in a later portion of this report, is sequenced so that the electrical load does not exceed the 4 KVA output of the generator. The Allison Division of the General Motors Corporation and the AiResearch Division of the Garrett Corporation were don-tasted relative to supplying the turbine-generator system, and both companies have submitted cost and schedule estimates. #### Controls **会会のなる。他の例とを表現る** The control panel to be located in the pilots cockpit is shown schematically in figure 3. In addition to the two switches shown on the panel, the pilots trigger switch will be incorporated as the prime disseminating control. The control switches will utilize the airplane's d.o. power to activate control relays. A schematic of the circuitry is shown in figure 12. Functions of the controls and indicator lights are described below. Master control switch (3 position switch) Position 1: generator off (no power to store components) Position 2: generator on (power available to store components, assuming air speed is 250 knots IAS or greater) Position 3: generator on, pump on, recirculation valve open Boom control switch (2 position switch) Position 1: nozzle boom extends (assuming generator on) Position 2: nozzle boom retracts (assuming generator on) Trigger switch (on-off switch) Switch depressed: heaters off, pump on, discharge valve opened Switch released: pump off, discharge valve closed, heaters on DECLASSIFIED IN FULL Authority: EO 13526 Chief, Records & Declass Div, WHS Date: 26 APR 2013 1 į, #### NORTH AMERICAN AVIATION, INC. LOS INGRILES 45. CALIFORNIA NA-61-758 Page 19 #### Indicating lights "Generator off" light illuminates if generator is not operating and Master Control switch is in "Generator On" or "Recirculate" position. "Boom not extended" light illuminates if "Boom Extend" switch is actuated and boom is not fully extended. "Flow" light illuminates when liquid is flowing from pump discharge line. #### Precautionary circuitry interconnects: Discharge valve can not be opened unless boom is extended. Boom can not be retracted unless discharge valve is closed. Recirculate valve is closed (if open) when trigger switch is depressed #### Heaters: Heater controls are actuated automatically, when the generator is on, by temperature sensing switches. #### Filling and Decontaminating Provisions for filling are illustrated schematically in figure 8. Connections from the filling pump are made to the flex line which goes into the recirculating system. As the tank is filled, it is vented through a flex line in the vent system to the return side of the filling system. For decontamination of the store after use, the inner tank and plumbing may be flushed with a decontaminating liquid by pumping it through the recirculating, disseminating and vent systems. The aft compartments of the store containing the pump, actuator, valves, etc., may be decontaminated by access through doors in these compartments. The center compartment housing the agent tank is sealed off from the aft compartment so that agent or decontaminant in the aft compartment will not seep into the insulating material in the center section. The exterior of the store can be decontaminated by hosing with a decontaminating liquid. > DECLASSIFIED IN FULL Authority: EO 13526 Chief, Records & Declass Div, WHS Date: 26 APR 2013 LOS ANGELES 45. CALIFORNIA NA-61-758 Page 20 #### REFERENCES - 1. Report No. ES20948, Surpary of Wind Tunnel Tests of the 20 Per Cent Scale External Store Model, Douglas Aircraft Company, El Segundo, California, dated 20 October, 1947 - 2. Report No. NA 55-1108, Summary of Aerodynamic Force: Coefficients of MALA Unit in Free Flight and Installed on F-100 Airplane as Derived from Wind Tunnel Tests, North American Aviation, Los Angeles, dated 5 October 1955 - 3. Sandia Corp. Report No., SCTN 387-58-(51), 25 November 1958 (Confidential Restricted Data) - 4. Report No. 4053, Wind Tunnel Investigation of Various Configurational Medifications of the Low Drag Bomb, NAVORD, US Naval Ordhence Laboratory, White Oak, Naryland, dated 22 July 1958, Confidential - 5. Report No. 6661, Drag and Roll Coefficients at Subsonic to Supersonic Velocities of 1/7-Scale Free Flight Hodels of the 1000 Found Low Drag Bomb (Ex-10), NAVORD, US NAVAL Ordnance Laboratory, White Oak, Maryland, dated 24 July 1959 - 6. Report No. NA 60-1403, Design Studies for an Airborne Line-Source Dissemination System for Liquid BW Agents, North American Aviation, Los Angeles, dated 4 November 1966. Secret - .7. Report No. NA-59-632, Airborne Biological Warfare at Low Altitude, North American Aviation, Lds Angeles, dated 16 June 1959, Secret - '8. Report No. NA-60-1149, Proposal For Design. Manufacture and Installation of a Prototype Airborne Store for Dissemination of Liquid BW Agent. North American Aviation, Los Angeles, dated 15 September 1960. Confidential - 9. Specification MIL-A-8591B(ASG), Military Specification Airborne Stores and Associated Suspension Equipment, General Design Criteria For, dated 26 May 1955. - 10. Report NA-52-186, Airplane Loads for an Air Superiority Pignter-Day (Monoplace) AF Model F-100A, Vol IV, North American Aviation, Los Angeles, California, dated 3 May 1954. DP-61-179 NORTH AMERICAN AVIATION. INC. 11,710 **DECLASSIFIED IN FULL** Authority: EO 13526 Chief, Records & Declass Div, WHS
· Date: 26 APR 2013 AERODYNAMIC DIMENSIONAL DATA GENERALIZEO LIQUIO AGENT STORE Page determined to be Unclassified Reviewed Chief, RDD, WHS IAW EO 13526, Section 3.5 Uate: 2 6 APR 2013 DP-61-180 | | 4.77 | | | e. | 5^ | N | | | | | N | OF | ₹⊤ | Н | A | M | ER | IC | ۸N | 1 / | ٩V | IA: | rio | N. | . [1 | VC | ! |] | F 1 |) -
• . | 5 | / -
 | 2.
== | 57 | 4
 | |--------------|-------------|------------------|--|----------|--------------------|------------------|----|---------|-------------|----------|-----------------|------------|-----------------------------|----|---------------|--------------|-------------|-----------------------------|-------------|------------|----------|---------|-------------------------------|------------------|-------------|----------|------------------|-----|------------|------------|-------------|----------------|-----------|-------------------------------------|------------------| | CHEC | | •• | | | | | | | | _ | | | | | | | | | | | | | | | | | | -:- | | * 0 | | | | - ·- | | | DA FS | | ۶ | E | 8 | ./ | 7 | 6 | / | 40 | D4 1 | +• | (| 9 (| 2. 6 | دج | ور | | | | | - | | - | | | | | | | :::
::: | | | | 6 | € 6 | 2 | | 5 | ;
; | • | | | | | | • | | | Ĭ. | .:.
::::::. | 1 | : · · | | | 50 | Ł, | 277 | 7 | 7 | \$ | 72 | 74 | 72 | Ι. | F | 1 | 7 | 7 | 11 | 77 | Æ | D | A | 3 | A | Z | 172 | 1 | A | 11 | <u></u> | C | 4/ | 74 | PA | 2 | Æ | Z | 15 | 7/ | | | 1 | 111 | · | | + | 1 | 4 | Æ | 72 | 十 | L | 26 | 2 | 26 | - | 4 | 46 | <u>ئے ج</u>
غ <u>ہ</u> ج | 7 | 22 | | U | Ø | 1 | 10 | R. | E | 1 | Z | - | \vdash | <u>:</u> | - | | - | | 11. | | | | | 1 | | | | | 1 | 7 | 4 | Z | Ĕ | 5. | 5 | 2 | 7 | 4 | 5/ | 54 | // | 74 | 7 | <u>'</u> | V | - | | | | | . . | 1: | | | | • | |): .
 • . • . | | . | - | | | | | | | | | : | | 1 | | | - | | | | - | - | | ; • • | : | 2 | Y 4 | 11 | • | : | ٠. | | : | | | | | | - | | | | | | | | | | | | | | | \top | | | | | | | | | | | | | <u>:</u>
: | \dagger | <u></u> | | | | 2 | 2, | | | | <u> (j</u>
J. | 4 | | 4. | Ŀ | - | + | | | | | - | 1 | - | | | | | | | | | E | (> | 8 | · . | | | | | | | | | | | | <u>:</u> | | | | | | | | | | | Ŀ | | | | | | | - | : | _ | | | | 6 | | | | | | | | | | | | | :: | 1 | | | | <u>.</u> | | | | | | | : . | | | :. | | | | | | | | · | | | i | | ;
;- | | | | | | <u> </u> | | | · · · | 1 | - 1 | | Ë | 1 | + | | 1 | | _ | | | · | | | | | - | | | | 7. | | 2 | | | - | : | | | | <u>: :i</u> | - | b | | | | - | 4 | _ | | | 1 | | 4 | | | | | | | | | | 1 | 4 | | | i | £ 47 | | l | |
 |
. ـ ـــــــــــــــــــــــــــ | | | | | | | -9 | L . | į:: | | | , ! | • | . . | 1. | :
::: :-
: | .4 | ; | | 90 | ر
ا | , | | | .8 | 7.57 | | | . ġ | ۲ | | ! | | : | | : | | | | | | | | | | 1 | | | | | ļ.,. | 1 | | | | | . : | | | | | | | | ښد.
ن | | !- | | | | ~ | | | | - | | | | - | <u></u> | ╗ | | - | - | _ | 14 | 22 | Œ | + | 1 | 24 | 27. | Q. | 2 | 2 | Æ, | 2. | 24 | بر
م | 20 | 4 | LAS. | 12 | 15 | 4 | 22 | æ | <u>~</u> | | 32 | کک | | | | - 1 | | 0 | 5 | | | | | | : | | | | | | | 1 | Y Z | | | | 8 | £. | a. | | | . 1. | 4 | 2 | | 91 | 7, | | ·2. | 1 | | | 4 | | | | - | | | | | | | . . | | | · : | | | | | | | | | - | سمد | ا | 二 | = / | Ø 9 | | | | | | | | | | 7 | | | - | - | | i. | | | | | | - | 7 | 7 | -114 | | | | | | | | | 7 | ď | = | * | | | - | - : | | | | | - - | - | • | P | | : <u>:</u> | | 11: | + | | | - | - | + | | - | | | | | | | = | - | | | α | | | - | | | | _ | | | | 1 | | | _ | | | | | | | | | | | : | | | | | | | - | معما ده
محما جو | -
-
-
- | موب
مرزز | - | X | - 0 | 70 | or | m č | 24 | · : | | | | | | | T. | : | | : | • | : : | | | | | | T | | | : | | | | | | : | T | |]. | | | | | | 7 | : | - | | | | | | <i>a</i> - | | ! | | | · j · | ‡ | | | | | - | | + | | <u> </u> | : | + | ٠ | 1 | | + | | + | | + | | Ť | .i | + | | | - i - | | - | . i | + | - | + | 4 | - | | | + | <u> </u> | | | <u>.</u> | - | | 11 | ØZ | - | | NZ | Us. | 42 | 7 <i>J</i> 2 | _ | : `
 | ļ | ··· | | | | <u> </u> | | | 1 | | | | | |
04 | 1 | | | | | | | - | | · · | | | | ::: | | | | | - |
: | | | . | ·; · | | ••• | | | | ٠٠.; | i | | | | . ni. | | . į į | | ر غ | 9 | | 7 | - | | | | | - | • | | | | | - | | | . i. | | | | ×= | | | | | | <u> </u> | · | | | - | M | | 1 | + | ं।
। | | | - | T | | | <u> </u> | il zw | | ** | + | ۾
حيث | 4 | | | <u> </u> | - | - | - | === | | = | 6 | 6 · | - | : | - | + | + | | | | | - | 1 | - | : :. | - | | - | 1 | <u>:</u> | _ | | - | ļ | | 1 | <u></u>
 | + | :::::. | \perp | | | | - | ! | | | 2 | | - | | Ŀ | | 1. | | | | | | • • • • | | : | | | | <u> -</u> |
 | | : | | ļ | : | _ | | | _;
_; | 1 | ; ,—
 | - | | | | | , _ , | 9 | | | | 1 | 1 | . : | | | | | | | | : | Ī | - | ! | 1: | | | : | | | | 1 | | - | | 1. | | | | | | - | - | - | · · | 1 | <u> </u> | : 1 | | 1 | | | - - - | | | 72 | 1 | | - - | | | - | | - -
 | -: |
! | | - | + | . j | - - | | ļ <u>.</u> | | - | | _ | - | | | | · · · | - | | - | - | + | | | | | - | | _ | | _ | | | j - | : | | | | | : | | · · | ļ | | <u> </u> | | _ | | | | | | | | | <u> </u> | | <u>.</u> | | | | | | | ;, | İ | | <u>i</u> | | | ! | . : | | • • • • | i | | | | | - | | | | | | | | | oς | - | o! | | | ļ | | | | | 1 | | ; - t | ر
د. | | | | | | | | | | <u>.</u>
ز | | | | | |
ۋىر | - | ——i | | | | 4 | | ٠ | | | | | | | į | | NORTH AMERICAN AVIATION, INC. 1753-61-291-5 G.O. 2533 23 FEB. 61 DRAG COEFFICIENT TINNED CONFIGURATION NOTE DATA BASED ON MAY STORE ∝ =10° oc = 2° MACH NUMBER and the second state of the Page determined to be Unclassified Reviewed Chief, RDD, WHS IAW EO 13526, Section 3.5 Uate: 2 6 ADD 2013 Best Available Copy DÉCLASSIFIED IN FULL Authority: EO 13526 Chief, Records & Declass Div, WHS Date: 2 6 APR 2013 一种的,我们就是一种,我们就是一种,我们就是一种,我们就是一种,我们就是一种,我们就是一种,我们就是一种,我们就会会会说,我们就会会会会说,我们也会会会会说,我们 DECLASSIFIED IN FULL Authority: EO 13528 Chief, Records & Declass Div, WHS NORTH AMERICAN AVIATION, INC. 152 6-22-2 H.J. ------GO. 2533 FEB. 61 6.0.2533 TIMATEO STORE PITCHING MOMENT COEFFICIENTS INDIO WING STA. OF F-100 AIRPLANE DATA BASED ON STORE PLANVIEW AREA (SQ FX) & LENGTH (FT) N OD FW 08 EW 40 > Page determined to be Unclassified Reviewed Chief, RDD, WHS IAW EO 13526, Section 3.5 Best Available Co Page determined to be Unclassified Reviewed Chief, RDD, WHS IAW EO 13526, Section 3.5 Uate: 2.5 ADD 2015 | Commence of the second | Uate: 2 6 APR 2013 | DP-61-185 | |------------------------|--|-----------------| | | NORTH AMERICAN AVIATION, II | NC. 77 37 37- 7 | | 1 M | | 419701 NO | | FEB. 23, 61 | | GO. 2533 | | | G Ø 2533 | | | | | | | ESTIMOTED ST | DEE ANIAL FORCE COEFE | CIENTS AS MOUNT | | AT INDOMED MIN | 40 SENTION OF THE F-100 | 2 AIRPLANE | | | A SUMMAN AND PROPERTY OF CHARLES AND PROPERTY OF CHARLES AND | 44 | | | | | | | | | | | NOTES DATA B. | ALED ON STORE | | | | STH (FT) | | | | 9.03 | | 3 | 3/ | | | 3 | | | | | | | | 7) and | 03 | | | | | | | 3 | | 104.9 | | 1 | 02 | 70 114.9 | | | | | | | | | | | ō, - - - - - - - - - | | | | | | | | | | | -4. | 0 2 4 6 | 8 /0 | | | ∝ ~ DE | 6. | | | | | | | | | | 1 1 1 1 1 1 | | | | | | | | | | | | | | | | | | | Best Available Copy Page determined to be Unclassified Reviewed Chief, RDD, WHS IAW EO 13526, Section 3.5 Date: 2 6 APR 2013 178-61-186 | | Date: | 2 6 APR | 2013 | | DP- | 61-186 | |-------------|---------------------|---|--
---|--|---| | 4.5 | NORTH | AMERIC | AN AVIA | TION, INC. | 1 / 1/2 - | -61-211-1 | | | | | | | | , | | | | | | | - | | | 1 F E B. 61 | | distributed at | 1 : ! . 1 | | | G.O. 2535 | | | G | 0 25 | 73 | | | - - - | | | | | | | | | | | | 111111111111 | 1 1 ' | , , | • | 'NO | | | | " :"" :. ·* <u>.</u> :: | | 1 1 | ! | | | MOUNTE | 27 | NOTE | MINO | 2 577 04 | F-10 | O ARTPLAN | | 4/4.72 | | | | | | | | | | PRES | 105EDO | A DENO | THE FT | NNUEW | | | | | | | | | | | | 575 | | | | | | | 2) 2 | ATA E | DR LEA | T WING | F_S 70. | es . | | | | | | | | | | | | | N- | | | | | | | | | | | | | | | 1 | 3 | | | | | | | | | | | | | | | | | | | 08 = 10 | | 7 - 4 | لمسمد ا | | | | E-14 majernai inc | 100 W | | | == 5 | | 0 | da | | 13 13 | | | 7 | 1 | | | | R | | क्ष | 3 | | | | | | | | | | 1 | | | | | | | | | | | | | | | | <u>m</u> | | | | | | | | 7 | | | -06.4W | | | | | | | | 108 = W | | | | | B | | مرمم | 07.4W | | | | Ì | | | | | | 16 E4 7 | | | | ارو کر
آمریمی | | | | | | | | | | | | 9 4 | | | | 0 | , r | 1 3 | | | | | | | | F | | .\$. | 3 | | | | | and the second second | | 18 | 3 | 1 1 | 1 1 | | | | | 8 | (0 ± 6) | 1 1 | 6 | | | | | | FEB. 61 SIDE WOTE | H. NORTH FEB. 61 TIMESTED CTORE SIDE FORE NOTE: 0 | NORTH AMERIC FEB. 61 G. Q. 26 FORES VON SIDE FORES CO MOUNTED DY INSTE SE -8 ST | NORTH AMERICAN AVIA FEB. 61 G. Q. 25 33 FUNDATED STORE Y SWING WOTE O DATE DATE (SQ. FE) SP. 883 SP. 883 STORE (SQ. FE) SP. 883 | NORTH AMERICAN AVIATION, INC. FEB. 61 G. Q. 26 33 TIBLETED STORE Y SWING MOSEN SIDE FORCE COEFFICIENTS MOTE OF MANO STORE SE SB3 STORE (SQ. FR) A SAND SE SB3 STORE SOLUTION OF THE | NORTH AMERICAN AVIATION, INC. 175- FEB. G1 G. Q. 25 33 TIMETED STREET YEWING MODISENT A SIDE ACAGE COEFFICIENTS MOUNTED DT NOTO WING STITUTE FT. Se 883 D DOTO FOR LOFF MING STITUTE SE 883 D DOTO FOR LOFF MING STITUTE THE COST TO STITUTE STITUTE STITUTE O DOTO FOR LOFF MING STITUTE THE COST TO STITUTE O DOTO FOR LOFF MING STITUTE THE COST TO STITUTE O DOTO FOR LOFF MING STITUTE THE COST TO STITUTE O DOTO FOR LOFF MING STITUTE THE COST TO STITUTE O DOTO FOR LOFF MING STITUTE THE COST TO STITUTE O DOTO FOR LOFF MING STITUTE THE COST TO STITUTE O DOTO FOR LOFF MING STITUTE THE COST TO STITUTE O DOTO FOR LOFF MING STITUTE THE COST TO STITUTE O DOTO FOR LOFF MING STITUTE THE COST TO STITUTE O DOTO FOR LOFF MING STITUTE THE COST TO STITUTE O DOTO FOR LOFF MING STITUTE THE COST TO STITUTE O DOTO FOR LOFF MING STITUTE THE COST TO STITUTE O DOTO FOR LOFF MING STITUTE THE COST TO STITUTE O DOTO FOR LOFF MING STITUTE THE COST TO STITUTE O DOTO FOR LOFF MING STITUTE THE COST TO STITUTE O DOTO FOR LOFF MING STITUTE THE COST TO STITUTE O DOTO FOR LOFF MING STITUTE THE COST TO STITUTE THE COST | Best Available Con Page determined to be Unclassified Reviewed Chief, RDD, WHS IAW EO 13526. Section 3.5 NORTH AMERICAN AVIATION, INC. 773 67 27 44 RSN. 401EL NO 6 0 2533 FEB. 23, 61 AVEREMENTAL SIDE FORCE LIND YANING MOMENT COEFFICIENTS Dies To Your De Tue STORE NOUNTY-DAT INCOMING STA OF THE K-100 AVAPLANE TINNED CONFIGURATION α 10 5... :2 0) ~ Dec Notesi 1) DATA BASED ON STORE X PLANVIEW AREALSOFT) :22 & LENGTH (FT.) 50 m 0.03 2) DATA EDALE ETIVAVO STORE 3) DATA INCLUDES 5 FEECTS OF MERTICAL 10 DC19. 301 \propto 12. 7 - DEG. 04 Best Available Copy Page determined to be Unclassified Reviewed Chief, RDD, WHS IAW EO 13526 Section 2 E Samuel Company | | • • • • • • • | | · · · · · · | | NO | RTH
• | | RIC. | 4-1-4 | VIA | TION | , INC | | | <i></i> | ۰ نام
عور | | | |--------------|------------------|--------|------------------------|----|-----|-------------------|--------------|-----------|--------------|-----------|---------------------------------------|--------------|----------|------------|---------------------------------------|--------------|----------|--| | | . .
24 | ı FE | B. (| 61 | | | | | | 4 | / | | | · 5 . Weg | G. <u>O</u> . | 0. 2533 | | | | | | | | | | | .:. | : | | | | 1: | : | ٠. | | | - | | | <u> </u> | | WE | 16 | 17 | gt. | NE | P | IA | CA | AR. | ACI | ERI | 571 | C 3 | QF | A | <u> </u> | | | G. | 11/0 | _ | | 1 | | | | | 7 | | Į. | 53E | | : | | , | : | | | | | | | | | | | | | | - | | | | <u> </u> | <u> </u> | | | | | 940 | | | | | | | | | | ļ | <u> </u> | | Ty | d T | FL | ILL | | | | | | | | | | 2 | | | | 1 | | | | <u> </u> | | <u>.</u> | | | | | | | | | | ٠. ,. | | | | | | | | | | | | | . | 900 | -3 | 00 | | | | | | | | | 1 | | | | | : | | | ·
· | | | | | | | | j | | | | | | 1 | | | | | | ₹ | 700 | 2 | 300 | | | ; | | | | | 1 | | | - | | | | | | <u>(</u> | | | | | | | <u>.</u> | | | | 1- | | | | | . | . | | | | 640 | -2 | 100 | | | 1 | | | | | <i>Y</i> | | ر | WE | 7547 | - 7-0 | ZEZ- | | | ¥ | | | | | | | | | | /
 | ļ | بر | ممر | | | | | | | | 500 | 3 | ممم | | | | | | | i' :
! | | مممر | !
! | | | | | | | | 300 | .38 | | | | ····• | : | | | | المحجمهما | | سمر | Iy | $I_{\mathcal{F}}$ | EMP | 77 | | | | | 7, | | | ; • | . : | | | | بمريم | | مممرر | | | | 1 | | | | } | 400 | 5 | 500 | | | | | <i>J.</i> | , , <i>j</i> | ٠., | | | , . | | , | | }
} | | | <u></u> | | 79/ | | | | | | ا
مرمر |
مور | مر | · · · · · · · · · · · · · · · · · · · | | | L | | - | <u> </u> | | | | 300 | 3 | 200 | | | | 1 |
مر | | | | | | | | | <u> </u> | | | | | | | _ | | - A | /
/
/ | | | | | | | | ļ. <u>:</u> |
 | | | | } | 200 | | 00 | | | / | ممر | | | | | | | | | | | | | | | | | | | مممر | | | | | | | | WE | (GN) | - 2-1 | 477 | | | | | | | | |
 | <u> </u> | | | | | ! | | | · · · · · · · · · · · · · · · · · · · | | · · . | | | | 100 | | 100 | | :: | | | | | | | | | | | | |
| | | | | | | | | — | , | | | | | | IX
IX | FOL
EMI | | | | | | -0- | - !- ! | 0 | | 41 | 3 . : | 80 | 2 | 16 | ea . | 14 | 0 | 20 | 7 | . | | | | | | | | | | AGE | ر برد.
تر برد: | | AR | ACI | 77 | ~
~ | GAL | | | | | | | NORTH AMERICAN AVIATION, INC. G.O. 2533 24 FEB. 61 OF CHARACTERISTICS 4055-5ECA LONG CG. EMPTY LONG. CG. FULL DIAMETER 40 AO : 140 : 160 :: 200 ABENT CAPACITY ~ GAL. Best Available Con DECLASSIFIED IN FULL Authority: EO 13526 Chief, Records & Declass Div Wule Page determined to be Unclassified Reviewed Chief, RDD, WHS IAW EO 13526, Section 3.5 Uate: 2 8 APR 2013 Page determined to be Unclassified Reviewed Chief, RDD, WHS IAW EO 13526, Section 3.5 Date: 2 6 APR 2013 LEGGE ON ROBLE THE NESS STEEL THE NAME OF PRINCES With The The second of th - College of the Contract t RANNE DETELL Page determined to be Unclassified Reviewed Chief, RDD, WHS IAW EO 13526, Section 3.5 Page determined to be Unclassified Reviewed Chief, RDD, WHS IAW EO 13526, Section 2 6 The state of the second MA-61-100 Fage 20 Pigure 5. DECLASSIFIED IN FULL Authority: EO 13528 Chief, Records & Declass Div, WHS Date: 2 6 APR 2013 | | | | | ·-·· ; ·· | · · · · | NO | RTH | AME | RIC | IN A | VIAT | ION. | INC | | | | | | |-------------|-------|---------------------------------------|---|-----------------|------------|----------------------------------|--------------|------------------|-----------------|--|--|--|---|--|----------|----------------------|------------|------------------------------| | | ***** | •n •• | e en | | . { | | · | | مس | | | | | 1 | | | • | | | 1.6 | - | * 91 | | | | ales e a cigiria.
A e e e e e | ere Tek | | | | | در در ۱۳۰۳
در نگر که مهند | ريو.
مدانة أرك | | SAME AND | • 9 • | | | | | | ransisi
Services
Services | | | | | | | | | • | a da a a a a a a a a a a a a a a a a a | | | | en er fråg.
Ersen | | | | - 1 | | | 12. | | FFCC | 7-37 | HERE. | nalls: | | 12.4 | SEPE | | | | J. J. | = ; | 100 | | | = | | | | 2 2 | | 1.15 | en H | LAT | | 72 60 | TYE | 120 | | | | | 1 | ر معاد از از
بعد از در از | | ي معنى جايج | | | | ļ. 1 | , , , | | EXP | MU20 | p tr | | 3 #C | ms. | | 1 | | | | - | | ľ | | L. 12 | | | | • | - | | <u> </u> | | | | | | | . | † | | | . | | | }
• | | ;
; | | | K | H | 16.4 | J.H. | #1.#J | A P | # 1 | | 4 | - | OF | | ž. | | | • | | ļ | | | | | i i | Fig. | 2.0017 | THE P | | | | | | | E | | | | | | 1 11 T | | /
 | | | | | | | | E | ļ | | | - | | | | | | .::- | | | | | | | | | | | ļ., j., | | | | | · · · · · · · · · · · · · · · · · · · | | | | | | | | | | | | () .45 .44
 | ** | | | | | - | | , | | | | 1 | | | | | | | | | | | | | | | | | , | | ļ.,. i. | | | | | | | | | 4 | | · · · | ļ |)
- | | | | | . 1 | | | | | | ļ <u></u> | - | | . | Hilli | | | | 1 | i di | | | | • ; ;• | | | ļ. † '' | | • | | | | | | | | L | | | 1 | | !! | 15 | 3 Za | 1- | | | <u> </u> | | | | | | | | | | | | | سعننم | 1 | | | | | | | | | | | | | : | | | | | | | | | | 1 | ********* | 14240 | | | | | | | | į | 4:1 | | | .30 | | | - | | | | ļ., | | ļ.,_ | μ | <u> </u> | | | | | | | • • | 34 | ļ i. ; | <u>.</u> ; | | | | | | | | | | ļ | | | ····, | | • | | : | | | | 1 | 1 | | | | | | | | | | | | | • | | | | .as | | 1. | | | ļ ₁₇ | <u> </u> | | 11,11
 | 1.1 (*)11
********************************** | : ::*
::::::::::::::::::::::::::::::::: | | | | 1. | | 1 | | | Ta trus | | : | | | | | l ;; | | | | | | | ļ., iš ļ. | | | . [| | | - | | i 15 m | | | h | ļ |
 ² | :::::::::::::::::::::::::::::::::::::: | | | | 1 | | | 1 | | į | | | 1 | מנ | | | ļ | | 1 | | | | ļ., | | | | | | | | | .::; ;*: | 탪 | | ini, a | | | | 1::- | | | | | | | | 1 4 | | | į | lar | | Tura's | | t | | ļ | ļi | | | | [::] :: | | " | | | ļ <u>i</u> | • | | - | | | 3 | 9 | | | | | İ | ļ | 1 | ļ | | | | | | | | • | | | } | | | | ļ | } ·
; · · · · | : | | | | | | | | | | | | •••• | | 71401 | | | ļ | ļ i . | ļ. . | | | ii | - | ., | | | | - T | j · | | | | • | Ù, | -10
-10 | | 1 | | 1 | | | | | | | | | | | | | | | !
 | | 5 | Q | 1 | מ | 8 | · : : : : : : : : : : : : : : : : : : : | , 2 | | ų 6 | | | | | | | • | | | . | ļ | | | | 1 | | | | | | • • • • • • | | | ! | | | 5 | · · · | | | į • | : | rba | ulat | LUKI | LALC | ASICI | 3 ~ | inui | E D | l. ' | | • | | i | | • | | | • · · · · · · · · · · · · · · · · · · · | : | 1 | 1 ; | ! . | | •••• •••••
• | | | | | | | | • | | | | ļ | | i | 4 | | • . | : | : | • . • - · | i . | ., | | | •••• | j | | | | | | : • | | • | į . | : | | : | : | ! | <u>.</u> | · :: | | | | | | | | | | 1 | | i | | 1 | 1 | į | | 1 | | | L | | | | | | j | | | | حيث المراز
المراز المراز
المراز المراز | | - 11-46 | | NO | RTH | AME | RIC | AN | VIA | TION | , IN | 2 . | | in in the second of | 40 | | |--------------|------------|--|-------------------|------------------------------|---|------------------------|--|-------------|----------------|-----------|----------|----------------------|-----------------------|-------|----------|--|------------------------|------------------------| | 1 | *4154 | | | | | المراسية. | ري د دروسي
د | | | espay
 | | | en i en inde d
Lin | | | neima
Na | AND THE SECOND | - <u> </u> | | | 1 MB - 8 (| (D. 4*. | | | | | ia = = • • • • • • • • • • • • • • • • • | - | | | | 20-10-1 5 | * *** | - | TO STATE | Samuel Marketine Section 1995
The section of the s | | | | | n.16 2 | 1132 or
114 | erio en
Portes | i -i- ja
Paner | | :: <u>-</u>
1-⊊-45, | in a | 4: 200 | ne <u>s</u> i. | HEUR | | | | | | | -1.79%+ 1
-1.79%+ 1 | | | | | | | | | Λ | | 170 | | TIRE | | TCM. | 4 | | | | | 15. | | Alle III | o-odore | | | : | | j | | Ţij. | | | | | | | | | | j., .; | | ii 💮 | | - | | | | | | + | - | | | | - | | | | | | | er: | | , c | | ļ · · · · | | ļ | | ļ | | | | L | 1 | | 4 | ļ | | | | <u>1</u> | | | | | | | | | | | | | | | | • | | | | ¥ | 1 | } | -714 | | ļ | | | | | | | | | | | | | | | | T . | | | 1 | | | 1 | | li. | | | | | | | | | 5 | | | I | | Ç. | | | . ' | in. | | | | | | | | | | | | | | Æ | | | | | | | | | | . | | | | | | | | | | | | ı a | | ļ | | | | ļ. <u>Ī</u> | L | | | | - | | | | 4 | - | | T. | | ¥ | . ; | | | | | | | | | | | | 1 | | | | | Ŀ | | J.S | | | | 1 | | | | | | | | | | | ç | . . | | T | | - | | | | | | | | | | † | | | | | 1 | | | L | | | | ا أناب | 1 |] | • • • | . | | | . | | | | | b | | | | T | | | | | . 1. | | 1 | | | | | | | | | | § | | | Ľ | | | | | ! | | 4 | | | | | | | | | | | r' 1 . | | 1 | | | | | | | | | | • | | | | | | | -•••
 | | | * | | | | i | ! | | | | | | |
 | | | | | | | | 1 | | | | | | | 4 | | | | | | | | | | | | | • | | | | | | | 1 | | | | | | | | | | | | | 1 | | | | | †
•••••••••••••••••••••••••••••••••••• | 1 :!
 | | | | | | | | | | | Ş | , • • • • • | | · *** | ••••• | ผ | | ļ . | !
 | | 17 | .: | | | | | | | | | | | | 1 | | 1 173.07 | 1 | | | | | | | | | : !* | | | | | 9 | | | _ | | 3 | | | | | | | | | | | | | | | | • | | 1 | •••• | | | :- | | | | | | | | | | | | | | | | _ | | | | | | | | | | | - 11. | | | | | | ্ন | | | | | • • • | | | | | | | | | | | | | | | : | ļ. | | | | | 1 | | | | | | |
 | ••••• | . Z. t | - - | | 1 | | | · · · · • •
 | | | | | | | | | | | <u> </u> | | | | | - | 2 | <u>.</u> | | | | | | ! | EA | , | 2 | | | 21 | (| 1 | | ξ'
1•4 | | b | 7 | | | | | | • | | | | | * | | | د به ر | | , uzə | | • | • | | i | : | DECLASSIFIED IN FULL Authority: EO 13528 Chief, Records & Declass Div WHR | | [] | . | ~• .• ····· | | | No | RTH | AM | ERIC | AN | AVI | ATIO | N, I | NC | | 48 M | • | | n∙ | | | |---------------|---------------------------------------|---------------|----------------|--------------------------------------|--------|-----------------------------|--------------------------------|-----------|-------|----------------------|---------------------|------------|------------|-------------------------|------------|-----------------|----------|-----------------------------|-----------------------------|---------------------------------------|-----| | - 13 | 1 | | | | | | ا ما د
پیشد منشد
شاعد، د | AFA PTO | | era egel
Ser egel | ng ve T.
Tanon i | | яд (). В | د
پارچون د د
د در | | | e e | | انهای ها
اینه سخت :
ا | | 12. | | | SHEP | 10 pr | - | . تايند | | | | | | | | | | r ajj | 724 | | *** | العمل والما
محملة والما | | المستناطعة
المستناطعة | | | .e | h | | : 7:-: | esta de la
granda de la compa | ed e d | | table of | · · | Γ. | | | 2011111 | | :
13:11:11 | - 1 | 908 | | i _k si
Sirkin | | | | | 1 | 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | | 1-1- | - | | | HE | TEN | ı RD | VIR | | (TS) | 77, | | | | | | | | | | Sansas
188 | | | | | | | | 123 | | | | | | " | ir di | | | | 1 | | | | | | | | er F | :/ · | | | 2014 | 14 | | | | | | - 1 | | | · · · | | | - | | • | | | | , | | | | | | | | | | | | | | . : | 1.1. | | ļ | | | | | | | + | • | | | | | | | | | | | | · .: | | | 1 | | L | | ļ | | | | | | | | | | | | | | | <u> </u> | | | | , | | [| , | | | | | | | | | | | | | | | | | | | ļ | | | K | | 1 100 1 100 1 | | | | | | | | | | | | | 1. | | . | | | | | | | | ļi | | - | | | | 1 1.1. | | | | | | - | - | - | | | | | 1 | | ; | | | 1 | . 1 | • • • • • | | | 1 | | ŢŢ | 1. | | | | | | | | | | i i | | | | | | | : | | - | | | ļ. ļ. | | | | , | | | | | | | 1 17. | | | | | | | | 30 | | | | 1 | | | | | | | | | | | ij | <u> </u> | | | | | | . }. | 17. | | | | | | | | 4 | | 5 | | | | | : . | ::
! | | | | | | • | | | - | | | 5 | 2 | | 5 | | Q. | | | | | ***** | : | | | | | |
 | 60 | | | | | A. | | | R | كأبا | 3 | | | ļ | | | | ļ | | | | | ۱
م | | | | | | | | | | , 10 | | | ::) | | | | | | | | | | · 4 | | | | | | | | | | 4 | | | | | , ; | | | | | | | | <u>다</u> | 40 | | ļ. i. | | ļ | - | | | 1 | | 7 | | i.
Hili | #46 | | 13 | | | | | ŀ | | Z: | | J | . j | iaja erlise.
Iajoportuai | | | | | | | | | | | | · | . | | | | | | ĥ | | | | | | | 1 | 4"1" | | , P. P. | 1-8: | Mei | E F | Yır | | : 1 | ::- | . : | | | · | | | 20 | | | | | بز | | | 1 | | -14 | | titif | 711 | | | | adi | | | | | | | | | an. | بمهرز | 4. | | 1 | ļ | ر
. اور | 113 | 1 | 565
565 | /tit | | | | | | | ŀ | · [| Ē. | | o Y | 100 | ent | | | ممهره | f* " | | 7 | # 1 | | | | ત્રં | i | | | | | | | X. | • | ***** | 1 | | | | 1.12 | | | . 4 | | . ;: | | /10 | - I | | | | | | • | t t | | | | A T | 1174 | | | | ممامما | ļ. <u>.</u> | | 1.14 |)H | d St | 4/1 | # F | | •••• | | | | <u>}</u> | | | =¥() · | .20 | 1 | الجيجاسة لم
النسب | ار رومند ا
محارما | | 2 | | | | | | | | | | | | | | ļ. | | - | ₽¥U. | | | | . 1 | 13.0 | į | | | | | | : ! | • | | . | • | • | | | | | ! | **** | , NO | i N | 10 100 | 1 | | | F | | | . | • • | | | | • • • | · • | | | | - | | | | , W | | - Alexander | , | | | Ĺ | | | 1_ | - - | | | | | | .: | | | | | . | | p. | . 4 | | | | |) | | 1 | | 1. | , | • | | : | • | · : | | | j | | . | •••• | | ! | | M. | CH I | UMBI | ir. | • ••••• | | 1 | | | | 1 | • | | · · · · · · · · · · · · · · · · · · · | | | | | | | ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, | | :
 | | | | · · · · · | i | | | | · · · · | | .j | | ! | | | | | | | ; | | | | | | | | - | į | 1 | i | | | | | . أجيست | | | | <u> </u> | <u>حانث نین</u> | طا | استفسم | | | بالشديات المادات | استهدد | لسممين | | | | | .4 | | ECL | ASSII
ity: E | FIED | IN F | ULL | | | Page determined to be Unclassified Reviewed Chief, RDD, WHS IAW EO 13526, Section 3.5 4.5 GG Page determined to be Unclassified Reviewed Chief, RDD, WHS IAW EO 13526, Section 3.5 Uate: 2 6 APR 2013 3 Best Available Copy | 780 | CIR | | |---------------------|---------------------|----| | 2 | | LH | | Γ | HATCH | | | .040 | 10 | _ | | 130 | (0 | : | | 234 | 10 | • | | 23/64 | te | 3 | | 100,00 | | | | 11-1/9 - | ; ; (3- | | | | | | | | | | 1 | | | REVISION | 3 | | | |--|---------|-----------------------|-----------------------------|------------|--------------|------------|-------------|------------|-------------|-------------------------|----------------------|----------------------|--------| | | | | | | | | | · | 25 2040AE A | STATION CONTROL | 2V NOL | D DATE & | ONATUR | | | | - | | | | | | <u> </u> | 1 PM | TS MACE OF | | 3 | | | 1. | | i. | | | | | LE | I. RE | VISED | 1 JUN O | 61 | <u> </u> | | | | | ŀ | • | | | | | | 2 | NA-61-7 | | | | | | | | | : | | | | | | Page
Figur | ુટ
૧૯ 12. | | | | | | | | • | | | | | | · | | | | | | | • | | • | | | | ÷ | | | | | | | ·
√ | | - | | | | | | | | DECLASS Authority: I | FO 13526 | | WHO | | | | | | | | | | | | Chief, Rec
Date: 2 (| ords&_De
CAPP 2 | class Div, \
013 | VMO | | | | ! | | | | | | | 1. | | , , . 11 * | | | | • | | : | | | | 13.
13. | | A | - | | | | | | | | : | | | | 5 | | | | | | | | | • | | • | | | | | | 4. | | | | | | | | | | | | | | 3 | | الم | * | | | | | | | • | | | | | - | | |
اسده | 253 | 3-9000 | 02 | • | | | | , | | | | | • | | | | | | | | | • | - | | | | - | | - | | | | - | | | | | | | | | | • | | | | CONFIE | ENTIAL | - | | | | | | | | | | | | | | | 1 | | 25 | | 8cc | /W5=1 | | | г— - | | | | | | | } | | 8500 P/ | UT NO. | D | ex | MArani | | 4 | ŽĒ Į | :04 | MATE CO | | , TUSED C | | | | VILLED HOLE | | | DICEPT AS N
ACTIONS DECU | CIED DATE | MATER
51/ | 7 . d V | 1,,,,,, | TO: | SCYEM7 | are-t | · | APPLICATION | | | | | T LAFAC | #1/32 # 0 | 010 CHK BY | J 4.418 | <u></u> | ₹'-~EC
} | · Arrigani | | · † | | DN, INC. | ;
! | | | . ~~. * | | | 2101 4200 | | | • | | | 1 | TIEPES
NITAMETERS | HERING
NAU AIRPYS | - 1 | | 10.1384+002.4
13.1314-maj | V | _ FLQ HAS | SO-10 UA | | ' | | 1 | (3 ru | 201 | 7 | | EN 43. CALIF | ĺ | | 10.1 35.+ 002.
10.1 35.+ 002.
10.1 77.5 006.
10.1 77.5 006.
10.1 77.5 006. | ∨ | fla hui
fat
eat | - | APPRO B. | | <u>.</u> | 1
\$ | (374 | <u> </u> | 7
1 SW
1 SIZ | (CI /// | 3 -9000 | | ## DEPARTMENT OF DEFENSE WASHINGTON HEADQUARTERS SERVICES 1155 DEFENSE PENTAGON WASHINGTON, DC 20301-1155 MEMORANDUM FOR DEFENSE TECHNICAL INFORMATION CENTER (ATTN: WILLIAM B. BUSH) 8725 JOHN J. KINGMAN ROAD, STE 0944 AUG 1 2013 FT. BELVIOR, VA 22060-6218 SUBJECT: OSD MDR Cases 12-M-3144 through 12-M-3156 At the request of the documents, we have conducted a Mandatory Declassification Review of the documents in the above referenced cases on the attached Compact Disc (CD) under the provisions of Executive Order 13526, section 3.5, for public release. We have declassified the documents in full. We have attached a copy of our response to the requester. If you have any questions, please contact Ms. Luz Ortiz by phone at 571-372-0478 or by e-mail at luz.ortiz@whs.mil, luz.ortiz@osd.smil.mil, or luz.ortiz@osdj.ic.gov. Robert Storer Chief, Records and Declassification Division Policet Storen ## Attachments: - 1. MDR request w/ document list - 2. OSD response letter - 3. CD (U) April 26, 2012 Department of Defense Directorate for Freedom of Information and Security Review Room 2C757 1155 Defense Pentagon Washington, D.C. 20301-1155 Sir: I am requesting under the Mandatory Declassification Review provisions of Executive Order 13291, copies of the following documents. I have tried several times to acquire them through DTIC, but the sites stated they are not available. I am conducting research into the previous methods used to disseminate biological agents. Many source I use to have access to have been deleted from the internet. On numerous occasions I have been informed that formerly classified information that was declassified, have now become classified again (since 911). My attempts to locate such Executive Orders, regulations, laws, or other changes to this question have not successful nor revealed a specific source. As such I would appreciate any information you can shed on this question. ## Documents requested. AD 348405, Dissemination of Solid and Liquid BW (Biological Warfare) Agents Quarterly 12-M-3144 Progress Report Number 14, 4 Sept - 4 Dec 1963, G. R. Whitnah, February 1964, General Mills Report number 2512, General Mills, Inc., Minneapolis, MN, Contract number DA 18064 CML 2745,102 pages. Prepared for U.S. Army Biological Laboratories, Fort Detrick, Maryland. Approved by S.P. Jones, Director of Aerospace Research at General Mills. Project No. 82408. General Mills Aerospace Research Division, 2295 Walnut Street, St. Paul 13, Minnesota. AD 346751, Dissemination of Solid and Liquid BW (Biological Warfare) Agents, Quarterly 12-M-3145 Progress Report Number 12, March 4 - June 4, 1963, G. R. Whitnah, July 1963, General Mills Report number 2411, General Mills, Inc., Minneapolis, MN, Contract number DA 18064 CML 2745. 184 pages. Approved by S.P. Jones, Director of Aerospace Research at General Mills. Project No. 82408. General Mills Aerospace Research Division, 2295
Walnut Street, St. Paul 13, Minnesota. AD 346750, Dissemination of Solid and Liquid BW (Biological Warfare) Agents, Quarterly 12-M-3146 Progress Report Number 13, 4 June - 4 Sept 1962, G.R. Whitnah, October 1963, General Mills Report number 2451, General Mills, Inc., Minneapolis, MN, Contract Number DA 18064 CML 2745. 19 pages (?) AD 332404, Dissemination of Solid and Liquid BW (Biological Warfare) Agents, Quarterly 12-M-3147 Progress Report Number 7, Dec. 4, 1961 - March 4, 1962, by G.R. Whitnah, February 1963, General Mills Report Number 2373, General Mills, Inc., Minneapolis, MN, Contract Number DA 18064 CML 2745. 123 pages. AD 333298, Dissemination of Solid and Liquid BW (Biological Warfare) Agents, Quarterly 12-M-314 B Progress Report Number 9, June 4, 1962 - Sept. 4, 1962. by G.R. Whitnah, October 1962, General Mills Report Number 2344, General Mills, Inc., Minneapolis, MN, Contract Number DA 18064 CML 2745. 130 (or 150) pages. AD 332405, Dissemination of Solid and Liquid BW (Biological Warfare) Agents, Quarterly 12-M-3147 Progress Report Number 8, Period March 4, 1962 - June 4, 1962. G.R. Whitnah, August 1962, General Mills Report Number 2322, General Mills, Inc., Minneapolis, MN, Contract Number DA 18064 CML 2745. 198 pages. AD 329067, Dissemination of Solid and Liquid BW (Biological Warfare) Agents, Quarterly 12-W-3150 Progress Report Number Six, G.R. Whitnah, February 1962, General Mills Report Number 2264, General Mills, Inc., Minneapolis, MN, Contract Number DA 18064 CML 2745. 103 pages. Approved by S.P. Jones, Manager, Materials and Mechanics Research, General Mills Research and Development Office, 2003 East Hennepin Avenue, Minneapolis 13, Minnesota. AD 327072, Dissemination of Solid and Liquid BW (Biological Warfare) Agents, Quarterly /2-M-3157 Progress Report Number Five, 4 June - 4 Sept 1961. by G.R. Whitnah, November 1961, General Mills Report Number 2249, General Mills, Inc., Minneapolis, MN, Contract Number DA 18064 CML 2745. AD 325247, Dissemination of Solid and Liquid BW (Biological Warfare) Agents, Quarterly 12-M-3152 Progress Report Number 4, 4 March - 4 June 1961, by J.E. Upton for G.R. Whitnah, Project Manager. February 1963, General Mills Report Number 2216, General Mills, Inc., Minneapolis, MN, Contract Number DA 18064 CML 2745. General Mills Electronics Group, Research Dept., 2003 East Hennepin Avenue, Minneapolis 13, Minnesota. 225 pages. AD 324746, Dissemination of Solid and Liquid BW (Biological Warfare) Agents, Progress 12-M-3133 Report 3 Juen - 3 Sept. 1960. by G.R. Whitnah, October 1960, General Mills Report Number 2125, General Mills, Inc., Minneapolis, MN, Contract Number DA 18064 CML 2745. 78 pages AD 323599, Dissemination of Solid and Liquid BW (Biological Warfare) Agents, Quarterly 12-M-3154 Progress Report Number 2, for period 4 Sept - 4 Dec 1960, by G.R. Whitnah, February 1961, General Mills Report Number 2161, General Mills, Inc., Minneapolis, MN, Contract Number DA 18064 CML 2745. 90 pages? Mechanical Division of General Mills, Inc., Research Department, 2003 East Hennepin Avenue, Minneapolis 13, Minnesota. AD 323598, Dissemination of Solid and Liquid BW (Biological Warfare) Agents, Quarterly 12-M-3175 Progress Report, for period 4 Dec. 1960 - 4 March 1961, by G.R. Whitnah, May 1961, General Mills Report Number 2200, General Mills, Inc., Minneapolis, MN, Contract Number DA 18064 CML 2745. 95 pages. AD 337635, Dissemination of Solid and Liquid BW (Biological Warfare) Agents, Quarterly 12-M-3156 Progress Report No. 10, period Sept. 4, 1962 - Dec. 4, 1962. G.R. Whitnah, Project Manager, Approved by S.P. Jones, Aerospace Research, February 1963. 247 pages. ## Sincerely