THIS FILE IS MADE AVAILABLE THROUGH THE DECLASSIFICATION EFFORTS AND RESEARCH OF:

THE BLACK VAULT

THE BLACK VAULT IS THE LARGEST ONLINE FREEDOM OF INFORMATION ACT / GOVERNMENT RECORD CLEARING HOUSE IN THE WORLD. THE RESEARCH EFFORTS HERE ARE RESPONSIBLE FOR THE DECLASSIFICATION OF THOUSANDS OF DOCUMENTS THROUGHOUT THE U.S. GOVERNMENT, AND ALL CAN BE DOWNLOADED BY VISITING:

HTTP://WWW BLACKVAULT COM

YOU ARE ENCOURAGED TO FORWARD THIS DOCUMENT TO YOUR FRIENDS, BUT PLEASE KEEP THIS IDENTIFYING IMAGE AT THE TOP OF THE .PDF SO OTHERS CAN DOWNLOAD MORE!

UNCLASSIFIED

AD NUMBER AD346751 CLASSIFICATION CHANGES TO: UNCLASSIFIED FROM: CONFIDENTIAL LIMITATION CHANGES TO: Approved for public release; distribution is unlimited.

FROM:

Controlling DoD Organization: Commanding Officer, Army Biological Labs., Frederick, MD.

AUTHORITY

OSD/WHS ltr dtd 1 Aug 2013; OSD/WHS ltr dtd 1 Aug 2013

DECLASSIFIED IN FULL Authority: EO 13526

Date: APR 12 711 3v, WHS

CONFIDENTIAL

AD 346751

DEFENSE DOCUMENTATION CENTER

FOR

SCIENTIFIC AND TECHNICAL INFORMATION
CAMERON STATION ALEXANDRIA VIRGINIA

Office of the Secretary	of Defense 501C \$557
Chief, RDD, ESD, WH	S +
Date: 15AM Z013	Authority: FO 13526
Declassify: X	Deny in Full:
Declassify in Part:	
Reason:	
MDR: <u>12</u> -M-3/4	

21 12-M-3145 MOTICE: When government or other drawings, specifications or other data are used for any purpose other than in connection with a definitely related government procurement operation, the U. S. Government thereby incurs no responsibility, nor any obligation whatsoever; and the fact that the Government may have formulated, furnished, or in any way supplied the said drawings, specifications, or other data is not to be regarded by implication or otherwise as in any manner licensing the holder or any other person or corporation, or conveying any rights or permission to manufacture, use or sell any patented invention that may in any way be related thereto.

NOTICE:

AFFECTAND THE NATIONAL DEFENSE OF THE UNITED SPATES WITHIN THE MEAN-1ND OF THE ESPIONACE LAWS, TITLE 18, U.S.C., SECTIONS 193 and 194. THE TRANSMISSION OR THE REVELATION OF ITS CONTENTS IN ANY MANNER TO AN UNAUTERIZED PERSON IS PROBLETED BY AW.

Page determined to be Unclassified Reviewed Chief, RDD, WHS IAW EQ 13524, Section 3,5 Date: ADD 4 9 1012

7

DECLASSIFIED IN FULL
Authority: EO 13526
Chief, Records & Declass Div, WHS
Date: APR 1 2 2013

ELICIRONICS DIVISION

This document consists of 184 pages, and is number 26 of 45 copies, series A and the following 0 attachments.

TWELFTH QUARTERLY PROGRESS REPORT

ON

DISSEMINATION OF SOLID AND LIQUID BW AGENTS

(Unclassified Title)

For Period March 4, 1963 - June 4, 1963 Contract No. DA-18-064-CML-2745

Prepared for:

JAN 3 L 1964

U. S. Army Biological Laboratories Fort Detrick, Maryland

Submitted by:

G. R. Whitnah

Project Manager

Report No: 2411 Project No: 82408 Date: July 10, 1963

Approved by:

S. P Jones, Director Aerospace Research

AEROSPACE RESEARCH 2295 Walnut Street St. Paul 13, Minnesota

Arrange Ave Transfer

DECLASSIEIEN IN FULL Authority: EO 13526 Chief, Records & Declass Div, WHS

te: APR **12** 2013

FOREWORD

Staff members of the Aerospace Research Department and Engineering Department who have participated in directing or performing the work reported herein include Mssrs. S. P. Jones, Jr., G. Whitnah, M. Sandgren, A. Anderson, R. Lindquist, J. McGillicuddy, J. Upton, C. Hagberg, W. L. Torgeson, S. Steinberg, P. Stroom, G. Morfitt, A. T. Bauman, T. Petersen, D. Harrington, R. Ackroyd, D. Kedl, B. Schmidt, G. Lunde, R. Dahlberg, R. Kendall, E. Knutson, J. Ungs, D. Stender, J. Pilney,

A. Johnson, G. Leiter, C. A. Morris, and O. Durigan.

Page determined to be Unclassified Reviewed Chief, RDD, WHS IAW EQ 13528, Section 3.5 Date:

ABSTRACT

This Twelfth Quarterly Progress Report presents the results of work conducted at General Mills, Inc. under Contract DA-18-064-CML-2745, "Dissemination of Solid and Liquid BW Agents" during the period from March 4 to June 4, 1963.

In reporting on the continuing study of the mechanics of dry powders, data are presented which were obtained with the improved multipurpose test unit in which shear strength, tensile strength and bulk density are measured within the confines of a single isolator lab. Initial findings are discussed for an investigation of three supposedly identical Sm samples which exhibit distinctly different compaction characteristics. Particle-size distributions (Whitby) are included, which show a smaller MMD for saccharin after compaction to a compressive stress of 2.84 x 10^4 dynes/cm². Tests showing that the addition of Cab-o-Sil to powders increases the stress required to produce a given bulk density are described.

Experiments with beds of fluidized powders are discussed in which bed depth, degree of agglomeration, amount of segregation or attrition, and amount of carry-over were investigated.

A specific surface area of 1.53 ${\rm m}^2/{\rm g}$ ±7 percent and a rugosity of 2.2 are reported for saccharin from measurements made by the BET gas adsorption method.

Results are given from experiments in which the effect of positive ions on aerosol decay was investigated in the aerosol chamber.

An investigation of the effectiveness of graphite in reducing sidewall friction of compacted powders sliding in cylinders is reported. A 50-percent reduction in the force required to eject the compacted powder has been observed when graphite is used as compared to the force required using a bare aluminum surface.

iii

DEGLASSIFIER IN FULL
Authority: EO 13526
Chief, Records & Declare Div. WHS
Date: APR 12 2013

COMPANY

Wind-tunnel studies are discussed for two areas of investigation. Simulant <u>Sm</u> was efficiently deagglomerated at an air velocity of Mach number 0.3 and at bulk densities ranging from 0.33 to 0.52 g/cm³. Storage of compacted <u>Sm</u> at -2 C or -23 C for periods up to 30 days has no significant detrimental effect on deagglomeration efficiency or viability.

Progress on the fabrication of the second E-41 spray tank is discussed. Minor design changes in the E-41 are described. Plans to flight test the E-41 at Eglin AFB on the F-100D and the F-105 are mentioned.

The status of planning and preparing for flight testing the E-41 spray tank on the AO-1 Mohawk airplane is reported.

iv

DECLASSIFIED IN FULL
Authority: EQ 13526
Chief, Records & Declass Div, WHS
Date:

40MMONWELL

TABLE OF CONTENTS

Section		Title	Page
1	INTRODU	CTION	1-1
2	STUDIES	of the mechanics of dry powders	2-1
	2. 1	Behavior of Powders in the Compacted State	2-1
	2.1,1	Shear Strength of Compacted Powders	2-1
	2. 1. Z	Tensile Strength of Compacted Powders	2-6
	2. 1. 3	Compaction Characteristics of 3 Sm Samples	2-16
	2. 1. 4	Fracture of Particles during Compaction	2-18
	2. 1. 5	Effect of Cab-c-Sil on Energy of Compaction	2-22
	2. 1. 6	Wall-Stress Distribution	2-22
	2. 2	Behavior of Powders in the Uncompacted State	2-24
	2. 2. 1	The Fluidization Process	2-24
	2. 2. 2	Apparatus	2-25
	2. 2. 3	Experimental Procedure and Results	2-27
	2. 2. 4	Conclusions and Future Work	2-32
3		AND CHEMICAL CHARACTERISTICS OF DER PARTICLE	3-1
	3. 1	Total Surface Area	3-1
	3. 1. 1	Total Surface Area of Saccharin	3-1
	3. 1. 2	Analysis of Experimental Errors in the	3-6
	-, -, -	Gravimetric BET Method of Measuring Surface	
		Areas	
	3. 1. 3	A Typical Error Analysis to Determine Controlling	3-14
		Errors	
	3. 1. 4	Application of the Error Analysis	3-19
	3. 2	Particle Shape	3-19
	3. 3	Agglomerate Strength	3-32
	3. 4	Powder-to-Metal Friction	3-32
	3. 5	Particle-Size Analysis of the Swirl Disperser's Output	3-32
4	AEROSOL	STUDIES	4-1
	4.1	Description and Operating Characteristics of the	4-1
	•	Corona-Point Ion Generator	
	4 3	Described for Plantanetatic Charge Runs	4-6

CONTIDENTAL

TABLE OF CONTENTS (continued)

Section		Title	Page
	4. 3	Experimental Results	4-8
	4. 3. 1	Talc Aerosols	4-8
	4. 3. 2	Saccharin Aerosols	4-8
	4.4	Sampling of Swirl Disperser's Output	4-11
5	EXPERIMENTS USING GRAPHITE TO REDUCE SIDE-WALL FRICTION OF COMPACTED POWDER SLIDING IN CYLINDERS		
	5. 1	Procedure	5-1
	5. 2	Results	5-4
	5. 3	Conclusions	5-9
6	DISSEMINATION AND DEAGGLOMERATION STUDIES		6-1
	6. 1	General Approach	6-1
	6. 2	Dissemination at Low Flight Speeds	6-1
	6. 3	Efficient Deagglomeration with the E-41 Aircraft Disseminator	6-2
	6. 4	Dissemination of Stored Sm in the Compacted Condition	6-8
	6. 4. 1	Wind-Tunnel Deagglomeration Tests	6-8
	6. 4. 2	Storage Viability Tests	6-9
7	E-41 SPRAY TANK		7-1
	7. 1	Fabrication of the Second E-41 Spray Tank	7-1
	7. 2	Improved Arrangement of Components within Discharge Shroud	7-1
	7. 3	Removal of Heater and Low-Pressure Switch	7-2
	7. 4	Addition of Filling Holes in Pistons and End Plates	7-2
	7. 5	Flight Tests at Eglin Air Force Base	7-4
8		RATIONS FOR FLIGHT TESTS OF THE E-41 SPRAY ON THE MOHAWK AIRCRAFT	8-1,

DECLASSIFIED IN FULL Authority: EO 13526 Chief, Records & Declass Div. WHS Date: APR 1 2 2013

γi

TABLE OF CONTENTS (continued)

Section		Title	Page
9	SUMMA	RY AND CONCLUSIONS	9-1
10	REFER	ENCES	10-1
APPEN	DIX A.	LOAD AND STRESS ANALYSIS, E-41 SPRAY TANK	
APPEN:	DIX B.	OPTIONAL FOUR-FINNED TAIL SECTION DRAWING SK 29100-1305	

STATISTICS TO SE

LIST OF ILLUSTRATIONS

Figure	Title		
2-1	Multipurpose Test Unit	2-2	
2-2	Close-Up of Multipurpose Test Unit Components	2-3	
2-3	Main Units for Determination of Shear Strength, Tensile Strength, and Bulk Density	2-4	
2-4	Close-Up of Improved Shear Strength Apparatus	2-5	
2-5	Shear Strength of Talc	2-7	
2-6	Shear Strength of Ground Saccharin	2-8	
2-7	Shear Strength of Ground Powdered Milk	2-9	
2-8	Shear Strength of Cornstarch	2-10	
2-9	Comparative Shear Strength of Compacted Powders	2-11	
2-10	Bulk Tensile Strength Versus Bulk Density for Powdered Sugar	2-12	
2-11	Bulk Tensile Strength Versus Bulk Density for Cornstarch	2-13	
2-12	Sketch of Instron Tensile Powder Sample	2-15	
2-13	Compaction Stress Versus Bulk Density for Sm	2-17	
2-14	Compaction Stress Versus Bulk Density for Sm (Dried)	2-19	
2-15	Particle Size Distribution of Saccharin Samples	2-20	
2-16	Illustrations of Deviations from Log-Log Plot of Compressive Stress Versus Density	2-21	
2-17	Sketch of Apparatus for Measurement of Wall Stresses	2-23	
2-18	Fluidized Bed Apparatus	2-26	
2-19	Change in Fluid Velocity with ΔP in the Fluid Bed	2-28	
2-20	Faulibration of Fluid Beds at Various Flow Rates	2-30	

viii

DECLARBIFIED IN FULL Authority: EO 13526 Chief; Records & Declass Div, WHS

Date: APR **12** 2013

LIST OF ILLUSTRATIONS (continued)

Figure	Title	Page	
3. 1	Saccharin Behavior	3-3	
3. 2	N ₂ Adsorption on Saccharin as a Function of Degassing Condition	3-4	
3, 3	N ₂ Adsorption by Saccharin after Various Degassing Conditions at Room Temperature	3-5	
3.4	N ₂ Adsorption Isotherm on Saccharin	3-7	
3.5	Uncertainty in BET Plot of N ₂ Adsorption by Saccharin	3-20	
3.6	Micrograph 63-2-71, Ground Talc	3-21	
3.7	Micrograph 63-4-5, Ground Talc	3-22	
3.8	Micrograph 63-4-43, Ground Talc	3-23	
3.9	Micrograph 63-4-44, Ground Talc	3-24	
3.10	Micrograph 63-4-52, Ground Saccharin	3-25	
3. 11	Micrograph 63-4-48, Ground Egg Albumin	3-26	
3. 12	Micrograph 63-4-51, Ground Powdered Milk	3-27	
3. 13	Micrograph 63-4-59, Sm (Pool No. 7)	3-28	
3. 14	Micrograph 63-B-11, Sm (Pool No. 7)	3-29	
3. 15	Micrograph 63-A-31, Powdered Sugar	3-30	
3.16	Micrograph 63-B-14. Unground Cornstarch	3-31	
4. 1	Corona-Point Ion Generator	4-1	
4.2	Characteristics of the Corona-Discharge Ion Generator	4-3	
4. 3	Position of Ion Gun with Respect to Dispersing Gun in the Aerosol Chamber	4-4	
4 4	Man of Ion Current Densities in Aerosol Chamber	4-5	

DECLASSIFIED IN FULL Authority: EO 13526 Chief; Records & Declass Div, WHS Date: ADD 1 2 7017

LIST OF ILLUSTRATIONS (continued)

Figure	Title		
4. 5	Modes of Ion Injection	4-7	
4.6	Half Lives, Initial Amplitudes, and Prevailing Humidity for Talc Aerosol Electrostatic Charge Runs	4-9	
4.7	Half Lives, Initial Amplitude, and Prevailing Humidity for Saccharin Aerosol Electrostatic Charge Runs	4-10	
4. 8	Gas Flow Characteristics of the Swirl Disperser	4-12	
5. 1	Schematic Diagram of Arrangement Used to Compact Powder into a Cylinder and to Determine the Force Required to Translate the Compacted Powder through the Cylinder	5-3	
5. 2	Comparison of Force to Eject Compacted Talc from a 6-Inch Diameter Aluminum Cylinder with and without Graphite	5-5	
5. 3	Comparison of Force to Eject Compacted Powdered Sugar from a 6-Inch Diameter Aluminum Cylinder with Graphite and a 7.5-Inch Diameter Aluminum Cylinder without Graphite	5-6	
5.4	Comparison of Force to Eject Compacted Talc from a 6-Inch Diameter Aluminum Cylinder for Various Methods of Ap- plying Graphite for Lubrication	5-7	
6. 1	Concentration of Fine Sm Aerosol Cloud in Wind Tunnel as a Function of Bulk Density (Airstream Mach Number 0.3; Sampling Probe Positioned 0.5 Inch from Wall)	6-3	
6. 2	Concentration of Fine Sm Aerosol Cloud in Wind Tunnel as a Function of Bulk Density and Airstream Mach Number (Sampling Probe Positioned 0.5 Inch from Wall)	6-4	
6. 3	Flight Speed Required for Dissemination of Dry, Compacted Sm Simulant (Lot S1-Sm-342) at Approximately 90 Percent Deagglomeration Efficiency	6-6	
6. 4	Energy Required to Compact Sm (Lot S1-Sm-342)	6-7	
7. 1	Housing for Components within the Discharge Shroud	7-3	

DECLASSIFIED IN FULL
Authority: EO 13526
Chief, Records & Declass Div, WHS
Date:
App. 4 9 8849

COMMENTAL

TWELFTH QUARTERLY PROGRESS REPORT ON DISSEMINATION OF SOLID AND LIQUID BW AGENTS

1. INTRODUCTION

This is the twelfth of a series of quarterly progress reports which have been submitted to the Biological Laboratories as documentation of the work being performed by General Mills, Inc. under Contract DA-18-064-CML-2745. This work pertains to the dissemination of solid and liquid BW agents, and ranges from experimental and theoretical studies of the properties of finely-divided solids to the fabrication and field testing of full-scale disseminators. Much of the work is of a continuing nature, and reference to previous quarterly progress reports is necessary to provide the complete coverage of the subject.

A primary objective was to develop a spray tank to be carried as an external store for line-source dissemination of dry BW agents from aircraft flying at high subsonic speeds. The E-41 spray tank was developed to satisfy this objective, and flight trials have demonstrated that the tank performs very well at a speed of Mach 0.7. Tests are now planned in which the E-41 will be flown on the AO-1 Mohawk aircraft at a speed of 200 knots (Mach 0.3). Dissemination and deagglomeration studies conconducted in the blow-down wind tunnel during the past quarter have demonstrated that compacted Sm can be efficiently aerosolized at this low flight speed if its bulk density does not exceed 0.52 g/cm³.

2. STUDIES OF THE MECHANICS OF DRY POWDERS

A program of study is underway to characterize the behavior of powders in the uncompacted state, their behavior during compaction, and their behavior in the compacted state. Such a study should yield information relative to the manufacture, handling, compaction, and dissemination of bulk powders. During the current quarter, we have utilized our improved multipurpose test unit and the energy-of-compaction apparatus to obtain fundamental information on a number of powders. In addition, we are looking very closely at three "similar" Sm samples to determine what characteristics are responsible for their different compaction properties. Studies are also underway to determine whether powder particles are fractured during compaction and to determine the effect of the addition of small amounts of Cab-o-Sil upon the compaction characteristics of powders. Fluid-bed experiments were conducted to determine the length of time required for a fluid bed to equilibrate, the extent of product loss during fluidization, and whether particle-size segregation results during the fluidization process.

2.1 Behavior of Powders in the Compacted State

Our completed multipurpose test unit is shown in Figures 2.1, 2.2, 2.3, and 2.4. This unit is used to measure shear strength, tensile strength, and bulk density within the confines of a single isolator lab. The newest addition, the improved sliding-disk shear-strength unit (Figure 2.4) is being used to obtain data reported in the following sections.

2.1.1 Shear Strength of Compacted Powders

To measure shear strength in the compacted state utilizing the slidingdisk method, the powder must first be compacted at a given compressive load and then sheared at some lighter load. The mechanics of this process of weight changing were sufficiently complicated to make it difficult to obtain reproducible

> Page determined to be Unclassified Reviewed Chier. RDD, WHS IAW EC 13526, Section 3.5 Date:

Page determined to be Unclassified Reviewed Chier, RDD, VVHS IAW EC 13626, Section 3.5 Date: APR 12 2013

Figure 2.3 Main Units for Determination of Shear Strength, Tensile Strength, and Bulk Density

Figure 2.4 Close-up of Improved Shear Strength Apparatus

data at the lower stress levels. The improved shear-strength unit (Figure 2.4) has been completed to eliminate these difficulties, as illustrated in Figures 2.5 through 2.9. Each point plotted represents the average value for three determinations. For purposes of comparison, data for four representative powders are presented in Figure 2.9 by the method of least squares.

2.1.2 Tensile Strength of Compacted Powders

Tensile strength remains the one powder property most difficult to measure. The determination of the tensile strength is, however, of such significance to the total development of the technology of powders that the time and effort spent on its determination is well justified. We are currently investigating the segmented column and Instron triaxial tensile methods.

2. 1. 2. 1 Segmented Column Method

The recent addition of a low-speed synchronous motor to replace the hand crank mechanism permits tensile failure of the compacted powder to take place at a more uniform rate. Because of the accuracy possible with this change in apparatus design, we feel that the data obtained are the best available from this method. Representative graphs are shown in Figures 2.10 and 2.11. Future work will include powders with diameters in the 5-micron range, such as ground egg albumin, ground powdered sugar, and Sm.

2.1.2.2 Triaxial Tensile Method

A continuing effort has been made to improve the triaxial tensile test technique that can be carried out in the Instron test machine. Difficulties in sample preparation have retarded attempts to carry out a programmed series of tensile tests. However, several tests were conducted using powdered sugar with average densities from 0.85 to 1.02 g/cm³. Failure was found to occur in the center section where the cross-sectional area is smallest.

Figure 2.5 Shear Strength of Talc

Page determined to be Unclassified Reviewed Cher. RDD, WHS IAW EO 13526, Section 3.5 Daie: APR 12 2013

Figure 2. 6 Shear Strength of Ground Saccharin

Figure 2.7 Shear Strength of Ground Powdered Milk

Figure 2.8 Shear Strength of Cornstarch

Figure 2.9 Comparative Shear Strength of Compacted Powders (Precompressed at 58, 800 dynes/cm²)

Figure 2.10 Bulk Tensile Strength Versus Bulk Density for Powdered Sugar

Figure 2. 11 Bulk Tensile Strength Versus Bulk Density for Cornstarch

Sample-preparation procedure was varied to find the best method. "Rulon liquid", a slip and antistick agent, and graphite were separately tested for use on the inner wall of the apparatus. Both the graphite and Rulon allowed the flared trisection to be removed without damage to the powdered-sugar specimen. In addition to this, an increase in the tensile strength of powdered sugar at a given density was found when graphite was used.

The accepted method of sample preparation finally adopted was to place this powder sample into the graphite-coated apparatus and to compress the powder simultaneously from both ends by means of two 1.2-inch diameter pistions to which equal loads are applied. The density was found to be highest in the end cylinders and lowest in the center section. The density of the center section increased with time of compaction. Density and tensile tests on powdered sugar revealed that an eighteen-hour period of compaction was sufficient to produce a state of equilibrium in the powdered-sugar specimen.

The procedure followed for testing the specimen in the Instron machine during this quarter was the same as that previously reported.

The densities of the powdered sugar specimens in the region of failure were determined by carefully dissecting them after failure (Figure 2.12). Preliminary results by this method yielded tensile strengths which lie between $0.9 \text{ to } 1.6 \times 10^4 \text{ dynes/cm}^2$ for densities of $0.85 \text{ to } 1.02 \text{ g/cm}^3$ using Rulon. However, when graphite was used, tensile strengths as high as $5.6 \times 10^4 \text{ dynes/cm}^2$ were obtained for the same density range. This range of bulk-tensile strengths was approximately the same as that determined by the segmented-column tensile test for powdered sugar (see Figure 2.23, Ref. 1).

It would appear that many problems can be eliminated by increasing the diameter of the 2.5-in. long "nacked-down" center sections.

Figure 2. 12 Sketch of Instron Tensile Powder Sample

2.1.3 Compaction Characteristics of 3 Sm Samples

Three Sm samples (S1-SM-342, 352, and Pool #7) currently under investigation display distinctly different compaction characteristics. Because these samples are supposed to be identical, it is of fundamental importance to determine what property and/or properties contribute to this difference. We should ultimately be able to trace the difference to variations in methods of manufacture and/or difference in processing of the samples since manufacture.

Samples of each were taken from a deep freeze in sealed jars and placed in a dry box with a relative humidity less than 2 percent. After allowing sufficient time for the samples to reach room temperature, the compaction unit was carefully filled with each powder, sealed into a 2-mil polyethylene bag, and removed from the dry box for testing in the Instron unit. At no time prior to the filling of the compaction unit were the sealed jars opened.

The piston of the compaction unit was then advanced at a constant rate of 0.02 in./min until a load of 2000 lb was reached for each test with <u>Sm</u>. After each test, the compaction unit was removed from its polyethylene bag and returned to the dry box.

Compaction force is plotted against density in Figure 2.13 for all three samples of Sm. Each sample was tested in duplicate with good agreement. But although the compaction curves for the three samples have approximately the same slope, the individual curves are offset with respect to one another, indicating a scale shift. This means that the stress required to compact each of the three samples to a given density is quite different.

Several tests have been initiated to explain the scale shift for the three Sm samples. These are tests for particle-size distribution, particle density, and moisture content. Moisture contents of the three samples, determined by a standard technique, (10) are indicated on Figure 2.13. As can readily be seen from this information, moisture content alone does not explain the relative positions of the curves. Previous work with egg albumin (2) has shown a shift to the right with increasing particle size. And we therefore expect that particle-size distributions and particle-density tests (not yet completed) will shed some light on this scale shift.

Figure 2.13. Compaction Stress Versus Bulk Density for Sm

To eliminate differences due to adsorbed moisture, the three Sm samples were dried by the same technique as that used for the moisture determinations. Compaction curves were again determined for the three dried samples, and results are presented in Figure 2.14. During these tests, no attempt was made to break up agglomerates produced by drying.

Compaction curves for the dried <u>Sm</u> samples S1-SM-342 and 352 are (for all practical purposes) the same and are nearly coincident with the compaction curve for S1-SM-342 at 2.78 percent moisture (Figure 2.13). The compaction curve for the dried Pool #7 sample lies to the right of its curve at 4.41 percent moisture.

It is thus evident that changes in moisture content alone do not account for scale shift. In addition to work already underway, studies of deagglomeration and changes in viability will be included to further explore this problem.

2. 1.4 Fracture of Particles during Compaction

A study is currently underway to determine the extent of particle fracture represented by changes in particle-size distribution that occur during the compaction of a powder sample. We are determining experimentally the changes in Whitby particle-size distributions of a saccharin sample under a compressive stress of 2.84 dynes/cm².

Considering the transmission of applied stress through a bed of powder by means of interparticle contacts, the interparticle contact area in a plane normal to the compressive stress is less than the total cross-sectional area, and the stress in the bed would therefore be larger than the applied stress. If this stress in the bed is sufficient to cause failure, then the size distribution will be changed.

Saccharin with an MMD of 6.9 microns and a standard deviation of 1.48 was compressed in the compaction apparatus $^{(3)}$ by the Instron test machine to a compressive stress of 2.84 x 10^{4} dynes/cm². Saccharin samples of approximately a milligram quantity were then withdrawn from the 2 1/2-in. diameter

Figure 2.14. Compaction Stress Versus Bulk Density for Sm (Dried) 2-19

Page determined to be Unclassified Reviewed Chief, ADD, WHS IAW EO 13526, Section 3.5 Data:

Figure 2.15 Particle Size Distribution of Saccharin Samples

powder receptacle, and its position from the center was recorded. Size analyses of the samples were performed, typical results of which are presented in Figure 2.15. It is evident that a change in particle-size distribution has occurred. Admittedly, this test was performed at a high stress level, which may exaggerate the effect. But it should be informative to make a quick check through a wider range of compressive stresses and with different powders to determine whether significant changes in size distribution result from the compaction process. Particular attention should be paid to powders with compaction curves whose slopes decrease at their upper portions (see Figure 2.16). This deviation from a straight line on the log-log plot of compaction stress versus density might indicate that particle failure is occurring, thus allowing density to increase more rapidly with stress. Sm would be a good sample for this test. See the compaction curves for Sm (Figures 2.13 and 2.14) in this report and note the changes in slope in the vicinity of $\sigma = 2.8$ dynes/cm².

Figure 2. 16 Illustration of Deviations from Log-Log Plot of Compressive Stress versus Density

2-21

2.1.5 Effect of Cab-o-Sil on Energy of Compaction

A number of fundamental studies carried out in this laboratory (3) have shown that Cab-o-Sil type additives can be used to measure flowability and dispersibility of powdered materials. These experiments were carried out on uncompacted powders. Although the use of additives with BW materials is not currently being stressed, we felt that the possibility of these principles being applied to dissimination of compacted powders warranted investigation.

Powder samples were mixed with 0.25 to 5.0 percent Cab-o-Sil by weight by processing through a modified fluid-energy mill. Energy-of-compaction data obtained from these samples indicated that much greater stresses were required to compact the Cab-o-Sil altered samples than to compact the unaltered powders to the same bulk densities. We have thus made a preliminary observation that the desirable properties which result from the addition of Cab-o-Sil will be obtained at the expense of greater difficulty in compacting the sample.

2.1.6 Wall-Stress Distribution

We are designing and building a piston-cylinder apparatus that will be capable of measuring stress at the cylinder wall created by the powder undergoing compaction. The measurement will be made as a function of a number of variables including type of powder, applied stress, and wall friction. This information will be of both theoretical and practical value. Details of this study will be presented in our next quarterly report.

A sketch of the piston-cylinder unit of the apparatus appears in Figure 2.17. The thin brass sleeve was rigidized by the outer heavy-walled aluminum sleeve. Holes drilled through the aluminum sleeve permit strain gauges to be placed upon diaphragm-like segments of the inner brass sleeve. Preliminary tests show that these gauged areas are very sensitive to changes in wall stress. The system of strain gauges is currently being connected to an automatic switching and recording system to permit efficient and accurate data collections.

Figure 2.17 Sketch of Apparatus for Measurement of Wall Stresses

2.2 Behavior of Powders in the Uncompacted State

Our current objective in this area of study is to determine the behavior of fine powders undergoing fluidization. Studies are being made to determine the length of time required for equilibration of the fluid bed, the percentage of mass lost by a powder undergoing fluidization, and the extent of particle-size segregation during fluidization.

2.2.1 The Fluidization Process

A fluidized bed is a fluid-solid system in which a bed of finely divided solid particles is lifted by a stream of fluid.

When a fluid is passed through a bed of solid granular material, one of two things can occur. If particulate fluidization takes place, there will be a uniform expansion of the bed, in which the increasing spaces between particles allow greater sase of passage of the fluid. If aggregative fluidization takes place, there will be a bed expansion accompanied by the formation of large bubbles that is analogous to the upward flow of gas through a column of liquid. Whether a fluid-solid system will exhibit particulate or aggregative fluidization depends on the ratio of particle density to fluid density, and (to a lesser extent) on particle size. Particulate fluidization generally occurs when the fluid is a liquid, and aggregative fluidization most often occurs when the fluid is a gas.

Consider a bed of particles resting on a fine mesh screen. As the fluid velocity through the bed is increased, the pressure drop across the bed increases until it equals the weight of the bed per unit area of the grid plate. This is the point of incipient fluidization, which is defined as the lowest superficial fluid velocity at which the pressure drop across the bed (at its lowest density) equals the weight of the bed charge.

When the point of incipient fluidisation is reached, continued increase of fluid velocity produces no further increase in pressure drop, but results in an expansion of the bed, in which the void spaces between the particles are increased, and the individual particles rest more upon a cushion of the fluid than directly upon each other.

Slugging and channeling are the two major problems encountered in fluidized bed experiments. If either is present, it must be eliminated before meaningful results can be obtained.

Channeling is a condition in which fluid passes through a bed of particles along a preferred path. Once started, channeling tends to grow worse until almost all the fluid is passing through the channel instead of being distributed evenly throughout the bed. One of the causes of channeling is a poor distribution of the solid material in the bed before fluidization. If the initial packing is such that a partial channel exists, the fluid will tend to follow this path of least resistance. It is also very important for the fluid to be well distributed over the entire area of the bed by the grid plate. A large number of small holes are preferred to a few large ones.

Slugging results when a bubble increases in size until its diameter equals that of the tube. It then carries a slug of powder with it as it rises. Fluid velocity is an important factor in the rate of bubble growth. For a given rate of bubble growth, slugging can be eliminated by using a tube with a length-todiameter ratio that allows the bubble to escape before ataining the diameter of the tube.

2.2.2 Apparatus

Having completed a preliminary study on the problems of fluidization of fine powders (described in the previous report), a more permanent and exacting experimental system was designed and constructed. This system is presented in Figure 2.18.

The fluidization chamber is composed of a glass tube and nylon base. The length of the glass tube will vary depending on the work being done, but its mean inside diameter is 2,59 cm. The base, machined from a solid nylon rod, is constructed in three sections for ease in cleaning and assembly. The grid plate used for the present series of tests is a fine screen with openings of about 169 microns.

Figure 2.18 Fluidized Bed Apparatus

An oil manometer measures the pressure drop across the powder bed and grid plate through a pressure tap on the side of the base. Silicone oil with a density of 1.066 g/cm^3 is used in the manometer.

The fluidizing media (air is currently being used) enters the base just below the grid plate. The flow rate is measured by a rotameter and is controlled by a 0-2 lb/in. 2 pressure regulator. Fine adjustments in flow rate can be made with a 20-turn needle valve.

In discussing flow rates in connection with fluidized beds, it is convenient to use fluid velocity because this takes tube diameter into account. Velocities up to about 20 cm/sec are possible with the present apparatus.

2.2.3 Experimental Procedure and Results

A series of experimental studies using granulated sugar was carried out using the new experimental arrangement. The pressure drop (Δp) was studied as a function of fluid velocity (v) for bed depths of 6, 15, and 25 cm.

A set of typical results is shown in Figure 2.19. It is seen that in each case there is a peak before the curve levels off. This is a result of the condition of the bed before fluidization. If a bed has maximum void volume, In Δp will increase linearly with $\ln v$ until incipient fluidization velocity is reached, and will then level off. Any other packing will result in the peak displayed here.

Within experimental error, the incipient fluidization velocities of the three bed depths agree quite well, as do their slopes before incipient fluidization:

Bed Depth	Incipient Fluidization Velocity	Slope
6 cm	2,55 cm/sec	3. 81
15 cm	3.10 cm/sec	3.65
25 cm	2.60 cm/sec	3.78

2.2.3.1 Fluidized Bed Tests - Talc

In the fluidized bed tests reported in the 11th quarterly report, we noted that talc tends to agglomerate quite badly when it is fluidized. This effect has been observed before with small particles of high material density. (5)

As a result of this agglomeration, the bed's depth does not remain constant, but steadily decreases with time even though the fluid's velocity remains constant. The present series of tests was conducted to determine how much time the bed requires to reach equilibrium.

Channeling problems during the tests were corrected by the addition of a small vibrator to the glass tube. With 22 g of tale, it was then possible to obtain fairly good fluidization. Seventy-five minute fluidization studies were made under fluid velocities of 4, 8, and 12 cm/sec. These will be referred to as samples 1, 2, and 3.

Figure 2.19 Change in Fluid Velocity with ΔP in the Fluid Bed

After the bed was prepared, a pressure regulator was adjusted to give the desired fluid velocity, and a timer was started. Minor random corrections were necessary to maintain proper fluid flow. Periodic measurements of bed depth and pressure drop were made and recorded. Three runs were made at each of the three fluid velocities, using fresh powder samples each time. Reproducibility of results was satisfactory.

One run at each of the flow rates is presented in Figure 2.29. Bed depth is plotted against time for a bed fluidized at 4, 8, and 12 cm/sec. At the end of the 75-minute run, the bed depth at 4 cm/sec is 28.7; at 8 cm/sec it is 24.5; and at 12 cm/sec it is 22.0. This might be taken as an indication that the lower flow rate actually fluidizes the bed better than the higher. This results from the fact that the higher flow rates agglomerate the powder more, resulting in a lower bed depth after flow is stopped. The following table illustrates the point.

Sample	Bed Depth, No Flow	Bed Depth, Fluidized	Percent of Expansion by Fluidization at Prescribed Flow Rates
1	27.4	28.7	4.8
2	20.3	24.5	20.7
3	17.9	22.0	22. 9

Sample 1 was fluidized at 4 cm/sec for 75 minutes. At the end of this time, the bed depth was 28.7 cm. When fluid velocity was reduced to zero the bed depth was 27.4. This means it was expanded 4.8 percent when fluidized. The same reasoning on Sample 2 (8 cm/sec) and Sample 3 (12 cm/sec) reveals that the higher velocities do expand the bed by a greater percentage than the lower velocities.

In the 11th quarterly report, it was noted that when a bed of talc was fluidized, the slope of the curve for bed depth vs fluid velocity decreased with each successive expansion. This was due to the fact that the powder was still agglomerating each time the bed was fluidized. During the recent tests, powder was fluidized for a 75-minute period. After each of these tests.

and the experience was the State of

four successive expansions were made without otherwise disturbing the bed. It was found that for all four expansions the curve of bed depth vs fluid velocity followed the same path (within experimental error) for both the 8 and 12 cm/sec treated samples. The 4 cm/sec sample did show some deviations, particularly at velocities above 4 cm/sec.

One would expect the agglomerates in the 12 cm/sec sample to be largest, and the 4 cm/sec sample to be smallest. This was confirmed by the incipient fluidization velocity for the three samples.

Sample	Incipient Fluidization Velocity	
1	0.6 cm/sec	
2	1.2 cm/sec	
3	4.0 cm/sec	

At fluid velocities of 8 and 12 cm/sec, good aggregative fluidization was obtained throughout the bed. But at 4 cm/sec, we found that fluidization took place in the upper portion of the bed while the lower portion was not fluidized. This effect has been observed before for heavy-particle systems, and results from the expansion of the fluid as it passes from the bottom to the top of the bed.

2.2.3.2 Powder Lost by Entrainment

Because the velocities used exceed the terminal velocities for many of the particles, it is obvious that a certain amount of the material will be carried out of the bed and be lost by entrainment. At 4 cm/sec there was no noticeable loss. At 8 cm/sec and 12 cm/sec, loss was visually detectable. This rate of loss decreased as the powder agglomerated. Measured losses are given below.

Fluid Velocity	Powder Lost
4 cm/sec	No measurable loss
8 cm/sec	0.6 g or 2.8 percent
12 cm/sec	1.2 g or 5.6 percent

2. 2. 3. 3 Particle Segretation and Particle Attrition

After a bed had been fluidized during a 75-minute run, samples were taken from the top and bottom of the bed. The samples were subjected to size analyses by the Whitby technique. There were six samples (top and bottom for 4, 8, and 12 cm/sec runs), and all were found to have identical size distributions. The values obtained also agreed with those for unfluidized talc. It appears that there has been little, if any, segregation or attrition during the current experiments.

2. 2. 4 Conclusions and Future Work

We have shown that under properly controlled conditions, powders with diameters in the 5-micron range can be satisfactorily fluidized with only limited loss of product from the bed. Agglomeration does occur but without particle-size segregation within the bed.

Future work will include the fluidization of other types of powders, and attempts will be made to conduct "viscosity" measurements in the fluid bed. In addition, experiments will be performed in beds of bulk powder to determine interparticle resistance to flow and resistance to flow imposed by various geometric shapes.

PHYSICAL AND CHEMICAL CHARACTERISTICS OF THE POWDER PARTICLE

Behavior of particulate material is fundamentally determined by the nature of the intermolecular forces (physical and chemical) existing at the contact areas between particles. The number and character of these contacts is directly related to the nature of the surfaces of the powder particles. To study this problem, we are comparing the experimentally determined external surface of a particle with a calculated theoretically spherical particle surface to obtain a measure of the roughness of an external surface. The use of electron and light microscopy is providing excellent supplementary particle-shape information. The problem of measuring the strengths of agglomerates and the problem of powder-to-metal friction are currently being investigated.

3. 1 Total Surface Area

The BET gas adsorption method (named for Brunauer, Emmett, and Teller, its developers) is being used to determine the total surface area of various powders. By this method, the quantity of gas necessary to form a monomolecular layer on the surface of the particle is determined. By assuming a value for the area covered by a single molecule, we are able to calculate the area covered by the adsorbed gas. During the preceding quarter, the total surface area of talc was determined. Talc particles are jagged, irregular, porous platelets (see electron micrographs in section 3.2) whereas saccharin has a relatively smooth, nonporous surface. We investigated the surface structure of saccharin for comparison during this quarter.

3. 1. 1 Total Surface Area of Saccharin

The total surface area of saccharin samples has been measured, and a procedure has been developed to cope with the problem of sublimation or other types of decomposition. A significant difference between the total surface areas of saccharin and tale was observed. Uncertainties in total surface measurements were analyzed in an error analysis of the BET method as applied to the gravimetric system.

In the application of surface-area measurements to powders (e.g., catalytic materials) there is no doubt about the stability of the powder under test conditions. The only concern is the removal of adsorbed contaminants, and degassing conditions are controlled by the nature of the contaminant.

However, in the case of saccharin, the stability of the powder is the controlling factor for degassing conditions. Saccharin sublimes readily at temperatures about 50 F above room temperature at pressures of approximately 5×10^{-5} mm Hg. At room temperature, its sublimation rate is negligible, permitting degassing at this temperature.

A degassing procedure of evacuation at a pressure less than 5×10^{-5} mm Hg at 76 F for 2 days will provide the "degassed state". The degassed state is defined as the state where further degassing will not produce any increase in surface area. If there are any contaminants remaining, they may be in one sense considered part of the structure, since to remove them one would have to decompose the powder. In this case, decomposition means sublimation.

The degassing temperature was decreased until sublimation occurred at a negligible rate. At high temperature (160 F) saccharin was observed to condense above the heating zone. At lower temperatures (96 F) saccharin was shown to be subliming by the fact that surface area increased with time of evacuation (Figure 3.1 and 3.2). Figure 3.2 shows the isotherms as the surface area increased from 0.8 m²/g to 2.32 m²/g and as temperature and degassing time were increased for the same sample. Figure 3.3 and Figure 3.1 show isotherms for degassing at room temperature. The surface areas of two samples are reproducible for much different evacuation times, and for the same powder the area does not increase with evacuation time. Measurement of the total surface area under conditions of powder stability has thus been accomplished.

Applying the BET equation to the adsorption data, we obtain a specific surface for saccharin of 1.53 $\text{m}^2/\text{g} \pm 7$ percent. The specific surface from the surface mean diameter, calculated from the MMD of 6.9 microns, is 0.71 m^2/g . The rugosity defined as BET Surface Area Surface area from MMD (Whitby) is 2.2.

Figure 3. 1 Saccharin Behavior

Run	Degassing Conditions				
	Temperature	Time (hr)	Pressure (mm Hg)	Area (m ² /g)	Comment
1	76 F	16	< 5 × 10 ⁻⁵	0.8	Runs 1-4 are the same sample.
2	96 F	+26	< 5 x 10 ⁻⁵	1.28	
3	96 F	+16	< 5 x 10 ⁻⁵	1.89	Plus time is that in addition to previous run.
4	85 F	+19	$< 5 \times 10^{-5}$	2.32	
5	76 F	113	$< 5 \times 10^{-5}$	1.53	
6	76 F	18	1×10^{-3}	1.32	Runs 6-8 are the same sample.
7	76 F	+30	< 5 x 10 ⁻⁵	1.59	Plus time is that
8	76 F	+19	< 5 x 10 ⁻⁵	1.42	in addition to previous run.

Figure 3. 2 N₂ Adsorption on Saccharin as a Function of Degassing Condition

Figure 3. 3 N₂ Adsorption by Saccharin after Various Degassing Conditions at Room Temperature

3-5

Page determined to be Unclassified Reviewed Chief, RDD, WHS IAW EO 13526, Section 3.5 Date:

From the complete isotherm (Figure 3.4), we see that saccharin exhibits no hysteresis. This indicates that saccharin has little or no internal surface or pore structure. This is in marked contrast to talc, ^{1} which exhibits definite hysteresis. The rugosity of 2.2 indicates that a small amount of internal surface exists. This can be seen by comparing to one "roughness factor" defined as

BET Surface Area Electron-microscope Area

Numerous powders exhibited roughness factors of 1 to 1.5. ⁽⁷⁾ Surface areas based on MMD by the Whitby method are usually a little larger than those based on electron-microscope determinations. ⁽⁸⁾ Therefore, the rugosity factor will be somewhat less than the roughness factor for a given powder.

3. 1. 2 Analysis of Experimental Errors in the Gravimetric BET Method of Measuring Surface Areas

The BET equation used to determine surface areas by adsorption is

$$\frac{P/P_o}{V(1 - P/P_o)} = \frac{1}{V_mC} + \frac{C - 1}{V_mC} P/P_o$$
 (1)

where

V * Volume adsorbed (STP) at pressure P

P = Vapor pressure of gas at adsorption temperature

C = Constant

V_m = Volume required to form monolayer

From a plot of

$$\frac{P/P_o}{V(1-P/P_o)} = \frac{P}{P_o}$$
 (2)

the slope S and intercept I are calculated, and are in turn used to calculate \mathbf{V}_m by the equation

$$V_{\mathbf{m}} = \frac{1}{S+1}. \tag{3}$$

3-6

Page determined to be Unclassified Reviewed Chief, RDD, WHS IAW EO 13526, Section 3.5 Date: ADD 1 5 and

Figure 3.4 N₂ Adsorption Isotherm on Saccharin

3-7

Page determined to be Unclassified Reviewed Chief, RDD, WHS IAW EO 13526, Section 3.5 Uate:

Experimental errors or uncertainties effect the quantities

$$F_1 = \frac{P/P_0}{V(1 - P/P_0)}, \text{ and}$$
 (4)

$$\mathbf{F}_2 = \mathbf{P}/\mathbf{P}_0 \ . \tag{5}$$

The errors in F_1 and F_2 are composed of the errors in each of the elements P, P_0 , and V.

The errors in \mathbf{F}_1 and \mathbf{F}_2 are related to the errors in $\mathbf{P},\ \mathbf{P}_0$, and \mathbf{V} by the equation

$$d \mathbf{F}_{1} = \left\{ \left(\frac{\partial \mathbf{F}_{1}}{\partial \mathbf{P}} d\mathbf{P} \right)^{2} + \left(\frac{\partial \mathbf{F}_{1}}{\partial \mathbf{P}_{0}} d\mathbf{P} \right)^{2} + \left(\frac{\partial \mathbf{F}_{1}}{\partial \mathbf{v}} d\mathbf{V} \right)^{2} \right\}^{1/2}$$
(6)

$$d F_2 = \left\{ \left(\frac{\partial F_2}{\partial P} dP \right)^2 + \left(\frac{\partial F_2}{\partial P_0} dP_0 \right)^2 \right\}^{1/2}$$
 (7)

In other words, the square of the error is equal to the sum of the squares of errors contributed by each element.

Substituting Equations (4) into (6) and (5) into (7), we obtain

$$d F_{1} = \frac{P/P_{o}}{V(1 - P/P_{o})} \left\{ \frac{(dP/P)^{2} + (dP_{o}/P_{o})^{2}}{(1 - P/P_{o})^{2}} + \left(\frac{dV}{V}\right)^{2} \right\}^{1/2}$$

$$d F_2 = P/P_o \left\{ \left(\frac{dP}{P} \right)^2 + \left(\frac{dP_o}{P_o} \right)^2 \right\}^{1/2}$$

Converting to percent of error,

$$\frac{d F_1}{F_1} = \left\{ \frac{(d P/P)^2 + (d P_0/P_0)^2}{(1 - P/P_0)^2} + \left(\frac{dV}{V}\right)^2 \right\}^{1/2}$$
 (8)

$$\frac{\mathrm{d} F_2}{F_2} = \left\{ \left(\frac{\mathrm{d} P}{P} \right)^2 + \left(\frac{\mathrm{d} P_0}{P_0} \right)^2 \right\}^{1/2} \tag{9}$$

In the outline below, we determine individually by the technique above the uncertainty due to each element.

3.1.2.1 Error in P and Po

The error in P and P is due to reading error:

$$dP = (error in reading each manometer leg) \sqrt{2}$$
 (10)

3.1.2.2 Error in Volume Adsorbed

The volume of gas adsorbed is obtained from the weight adsorbed, by the ideal gas law:

$$V \approx \frac{W_a}{M} \frac{RT}{P}$$

The percent of error in V is

$$\frac{dV}{V} = \frac{dW_a}{W_a} \tag{11}$$

where W_a = weight adsorbed.

 $\mathbf{W}_{\mathbf{a}}$ is related to experimental data for gravimetric methods by

$$W_a = \frac{W_{sp} + W_{Bf}}{W_a}$$
.

3-9

Page determined to be Unclassified Reviewed Chief, RDD, WHS IAW EO 13526, Section 3.5 Date:

The percent of error in W due to error in each component is

$$\frac{dW_{a}}{W_{a}} = \left\{ \frac{(dW_{sp})^{\frac{2}{4}} (dW_{Bf})^{2}}{(W_{sp} + W_{Bf})^{2}} + \left(\frac{dW_{s}}{W_{s}}\right)^{2} \right\}^{1/2}$$
(12)

where

W = weight change recorded by spring

WBf = buoyant force

W = weight of sample.

3. 1. 2. 2. 1 Error in Weight Change

Error in weight change as measured by spring displacement \mathbf{W}_{sp} is determined by the equation

$$W_{ap} = D_f/K$$
.

The percent of error is

$$\frac{dW_{sp}}{W_{sp}} = \left\{ \left(\frac{dD_f}{D_f} \right)^2 + \left(\frac{dK}{K} \right)^2 \right\}^{1/2}$$
(13)

where

D_f = displacement read by filar eye piece

K = sensitivity of spring, filar units/unit weight.

The error in D, is

$$dD_f = (error in making each ready) \sqrt{2}$$
 (14)

The error in K is due to calibration errors and uncertainty of spring temperature. The sensitivity is determined by the calibration equation,

$$K = \frac{D_{fcal}}{M_{cal}}$$

3-10

Page determined to be Unclassified Reviewed Chief, RDD, WHS IAW EO 13526, Section 3.5 Date:

and the percent of error is

$$\frac{dK}{K} = \left\{ \left(\frac{d D_{fcal}}{D_{fcal}} \right)^2 + \left(\frac{d M_{cal}}{M_{cal}} \right)^2 \right\}^{1/2}$$
(15)

where

D_{fcal} = displacement read by filar eye piece in calibration

M cal = weight used to calibrate the eye piece.

Error in K for quartz springs due to temperature uncertainty is given by, (11)

$$\frac{\partial \ln K}{\partial T} = -1.23 \times 10^{-4}$$

$$\frac{\partial K}{\partial T} dT = -1.23 \times 10^{-4} \text{ KdT}$$
(16)

where

T = temperature of spring

dT = temperature uncertainty

The percent of error in K due to temperature and calibration uncertainty is

$$\frac{dK}{K} = \left\{ \left(\frac{d D_{fcal}}{D_{fcal}} \right)^{2} + \left(\frac{d M_{cal}}{M_{cal}} \right)^{2} + (1.23 \times 10^{-4} dT)^{2} \right\}^{1/2}$$
(17)

Percent of error in W sp due to each experimental error is found by substituting Equation (17) into Equation (13):

$$\frac{dW_{sp}}{W_{sp}} = \left\{ \left(\frac{dD_f}{D_f} \right)^2 + \left(\frac{dD_{fcal}}{D_{fcal}} \right)^2 + \left(\frac{dM_{cal}}{M_{cal}} \right)^2 + (1.23 \times 10^{-4} dT)^2 \right\}^{1/2}$$
(18)

3. 1. 2. 2. Error in Buoyant Force

Buoyant forces are calculated by

Page determined to be Unclassified Reviewed Chief, RDD, WHS IAW 60 13828, Section 3.5 Uate:

and percent of error by

$$\frac{d W_{Bf}}{W_{Bf}} = \left\{ \left(\frac{d V_{T}}{V_{T}} \right)^{2} - \left(\frac{d \rho_{g}}{\rho_{g}} \right)^{2} \right\}^{1/2}$$
(19)

where

 V_{T}^{-z} total volume of sample plus quartz bucket and fiber ρ_{g}^{-z} gas density.

The total volume is given by

$$V_T = V_q + V_g$$

and the percent of error by

$$\frac{d V_{T}}{V_{T}} = \left\{ \frac{(d V_{q})^{2} + (d V_{s})^{2}}{(V_{q} + V_{s})^{2}} \right\}^{1/2}$$
 (20)

where

V_q = volume of quartz

V = volume of sample.

The percent of error for the quartz volume is

$$\frac{d V_q}{V_q} = \left\{ \left(\frac{d W_q}{W_q} \right)^2 + \left(\frac{d \rho_q}{\rho_q} \right)^2 \right\}^{1/2}$$
 (21)

where

W = weight of quartz

ρ = density of quartz

and the percent of error for the sample volume is

$$\frac{dV_s}{V_s} = \left\{ \left(\frac{dW_s}{W_s} \right)^2 + \left(\frac{d\rho_s}{\rho_s} \right)^2 \right\}^{1/2}$$
 (22)

where

 $dW_g = \sigma_g$ from least squares line for relating spring deflection to

W = sample weight

p = sample density.

The density of the vapor was calculated by the Biethelot equation (12)

$$V = \frac{RT}{P} \left[1 + \frac{9}{128} \frac{P_R}{T_R} \left(1 - \frac{6}{T_R^2} \right) \right]$$
 (23)

where

V = molal volume

R = gas constant

TR = reduced temperature at temperature T

 P_R^{-2} reduced press at pressure P

T = temperature of adsorption

P = pressure of adsorption.

If we assume that the Birthelot equation gives exact results, the percent of error in the gas density ρ_{g} is given by,

$$\frac{\frac{d p}{p_g}}{g} \left\{ \frac{\left(d P/P\right)^2 + \left[1 + \frac{81}{64} \frac{P_R}{T_R^3}\right]^2 \left(\frac{dT}{T}\right)^2}{\left[1 + \frac{9}{128} \frac{P_R}{T_R} \left(1 + \frac{6}{T_R^2}\right)\right]^2} \right\}^{1/2}$$
(24)

3-13

Page determined to be Unclassified Reviewed Chief, RDD, WHS IAW EO 13526, Section 3.5 Date:

The temperature was determined by interpolating between values of vapor pressure versus temperature by

$$\log \frac{P}{P_0} = (0.05113) (T - T_0)$$
, and

the percent of error in temperature is.

$$dT = \frac{2.303}{0.05113} \frac{dP_0}{P_0}.$$
 (25)

3.1.3 A Typical Error Analysis to Determine Controlling Errors

3.1.3.1 Error in P and Po

The uncertainty is due to the uncertainty in reading the manometer leg with the cathetometer which is 0.1 mm Hg. Therefore,

$$dP = dP_Q = 0, 1\sqrt{2}$$
 (26)

3.1.3.2 Error in V

3. 1. 3. 2. 1 Error in Weight

Error in weight is given by Equation (18):

$$\log Pmm = \frac{-334.6376}{T} + 7.5777 - (0.00476) T$$

By taking ratios at the adsorption temperature and the normal boiling point and if the adsorption temperature is close to the normal boiling point, the working equation can be derived.

^{*}From critical tables, the equation relating vapor pressure to temperature is

$$\frac{d W_{sp}}{W_{sp}} = \left\{ \left(\frac{d D_f}{D_f} \right)^2 + \left(\frac{d D_{fcal}}{D_{fcal}} \right)^2 + \left(\frac{d M_{cal}}{M_{cal}} \right)^2 + (1.23 \times 10^{-4} dT)^2 \right\}^{1/2}.$$

The uncertainty in reading the filar eye piece is one unit. The uncertainty d $D_f = 1\sqrt{2}$ since the displacement is the difference between two readings. In the calibration, a 10.02 \pm 0.01 mg weight was used and produced a spring displacement of 821 filar eye-piece units.

$$\frac{d D_{fcal}}{D_{fcal}} = \frac{1\sqrt{2}}{821} = 1.73 \times 10^{-3}$$

and

$$\frac{\text{d M}_{\text{cal}}}{\text{M}_{\text{cal}}} = \frac{0.01}{10.02} = 1 \times 10^{-3}.$$

The uncertainty in the temperature of the column water was measured at $0.05\ C$,

$$1.23 \times 10^{-4} (0.05) = 6.15 \times 10^{-6}$$

Because spring deflections of 821 filar eye-piece units never occur, and because most deflections are usually an order of magnitude less, the controlling error in weight change as measured by the spring is the error due to reading the eye piece

$$\frac{\mathrm{d} \ \mathbf{W}_{\mathrm{sp}}}{\mathbf{W}_{\mathrm{sp}}} \sim \frac{\mathrm{d} \ \mathbf{D}_{\mathrm{f}}}{\mathbf{D}_{\mathrm{f}}} \,,$$

(27)

$$d W_{sp} = \frac{d D_f}{K}$$
.

This means that the error in W is constant for any given spring.

3. 1. 3. 2. 2 Error in Buoyant Force

Errors in total volume are given by Equation (20):

$$\frac{d V_{T}}{V_{T}} = \left\{ \frac{\left(d V_{q}\right)^{2} + \left(d V_{s}\right)^{2}}{\left(V_{q} + V_{s}\right)^{2}} \right\}^{1/2}$$
3-15

Page determined to be Unclassified Reviewed Chief, RDD, WHS IAW EO 13526, Section 3.5
Uate: APR 1 5 2013

The usual case is that the volume of the sample is 10 times as large as the volume of quarts. Therefore, errors in the sample volume would predominate:

$$\frac{d V_T}{V_T} \approx \frac{d V_s}{V_s} \tag{28}$$

Errors in volume of the sample are determined by Equation (22):

$$\frac{d V_s}{V_s} = \left\{ \left(\frac{d W_s}{W_s} \right)^2 + \left(\frac{d \rho_s}{\rho_s} \right)^2 \right\}^{1/2}$$

From least squares analysis

d
$$W_{\rm s} = \sigma_{\rm g} = 0.36$$
.

The error in the true density is approximately 2 percent;

$$\frac{\mathrm{d}\,\rho}{\rho_s}=0.02$$

$$\frac{dV_s}{V_s} = \left\{ \left(\frac{0.36}{600} \right)^2 + (0.02)^2 \right\}^{1/2}$$

From this we are that the error in density of the sample predominates, or

$$\frac{\mathrm{d} V_s}{V_s} \approx \frac{\mathrm{d} \rho_s}{\rho_s} \,. \tag{29}$$

The error in the density of gas is provided by Equations (24) and (25):

$$\frac{\frac{d \rho_{g}}{\rho_{g}}}{\frac{1}{\rho_{g}}} = \left\{ \frac{\left(d P/P\right)^{2} + \left[1 + \frac{81}{64} \frac{P_{R}}{T_{R}^{3}}\right]^{2} \left[\frac{2.303}{0.05113} \frac{d P_{o}}{P_{o}} \frac{1}{T}\right]^{2}}{\left[1 + \frac{9}{128} \frac{P_{R}}{T_{R}} \left(1 - \frac{6}{T_{R}^{2}}\right)\right]^{2}} \right\}^{1/2}.$$

At the normal boiling point of nitrogen, $P_R = 6.5 \times 10^{-3}$ and $T_R = 0.6$; and substituting above we get

$$\frac{d P_{g}}{\rho_{g}} = \frac{\left(\frac{d P}{P}\right)^{2} + 1.05 \left(\frac{d P_{o}}{P_{o} T}\right)^{2}}{0.98}.$$

The percent of error in P_0 is always much less than P: and dividing by T, the temperature of adsorption, makes

$$\frac{dP}{P}$$
>> 1.05 $\frac{dP_0}{P_0}\frac{1}{T}$.

Therefore,

$$\frac{\mathrm{d} \, \rho}{\rho_{\mathrm{g}}} \approx \frac{\mathrm{d} \, \mathbf{P}}{\mathbf{P}} \,. \tag{30}$$

The error in the buoyant force is given by Equation (19):

$$\frac{d W_{Bf}}{W_{Bf}} = \left\{ \left(\frac{d V_{T}}{V_{T}} \right)^{2} + \left(\frac{d \rho_{g}}{\rho_{g}} \right)^{2} \right\}^{1/2}$$

Substitute Equation (28), (29), and (30) into Equation (9), and we obtain

$$\frac{d W_{Bf}}{W_{Bf}} = \left\{ \left(\frac{d \rho_s}{\rho_s} \right)^2 + \left(\frac{d P}{P} \right)^2 \right\}^{1/2}.$$

Since d P = 0. $1\sqrt{2}$ mm Hg and P is always greater than 50 mm Hg,

$$\frac{d \rho_s}{\rho_s} \ll \frac{d P}{P}.$$

Therefore,

$$\frac{d W_{Bf}}{W_{Bf}} \approx \frac{d \rho_{B}}{\rho_{B}} \tag{31}$$

Page determined to be Unclassified Reviewed Chief, RDD, WHS IAW EO 13826, Seption 3.5

Uate: APR 1 5 2013

The error in the volume adsorbed is determined by Equations (11) and (12):

$$\frac{dV}{V} = \left\{ \frac{\left(dW_{sp}\right)^2 + \left(dW_{Bf}\right)^2}{\left(W_{sp} + W_{Bf}\right)^2} + \left(\frac{dW_s}{W_s}\right)^2 \right\}^{1/2}.$$

Because the error in the density of the sample was shown to obscure the error due to weighing the sample (see the analysis of errors in the buoyant force), derivation of Equation (29) is

$$\frac{dV}{V} = \left\{ \frac{(dW_{sp})^2 + (dW_{Bf})^2}{(W_{sp} + W_{Bf})^2} \right\}^{1/2}.$$

Substituting Equation (31) and Equation (27) into the above equations provides

$$\frac{d V}{V} = \left\{ \frac{\left(\frac{d D_f}{R}\right)^2 + \left[W_{Bf} \frac{d \rho_s}{\rho_s}\right]^2}{\left(W_{sp} + W_{Bf}\right)^2} \right\}$$
(32)

The error in the function F_1 is arrived at through Equation (8):

$$\frac{d F_1}{F_1} = \left\{ \frac{(d P/P)^2 + (d P_0/P_0)^2}{(1 - P/P_0)^2} + \left(\frac{d V}{V}\right)^2 \right\}^{1/2}.$$

Because the error due to the density of the sample obscured the error due to pressure in the buoyant-force error analysis, derivation of Equation (31) can approximate the error in F₁ by

$$\frac{d \mathbf{F_1}}{\mathbf{F_1}} = \frac{d \mathbf{V}}{\mathbf{V}}$$

and substituting Equation (32), we get

$$\frac{d F_{1}}{F_{1}} = \left\{ \frac{\left[\frac{d D_{f}}{K}\right]^{2} + \left[W_{Bf} \frac{d \rho_{g}}{\rho_{g}}\right]^{2}}{\left(W_{gp} + W_{Bf}\right)^{2}} \right\}^{1/2}$$
(33)

For the same reason, we can say that the error in F_1 is much greater than the error in F_2 and that in plots only the error in F_1 need be considered.

3.1.4 Application of the Error Analysis

In Figure 3.5, the results of the error analysis are applied to the saccharin data, with the uncertainty of each point plotted as an "error bar". The solid line is the average line depicting the area for saccharin of 1.53 m²/g. The dashed lines are the envelopes of the most probable slopes drawn through any set of data. They were drawn to include 2/3 of the error bars in each run. (5) The areas calculated from these envelopes represent an uncertainty of 7 percent. The envelope include about 2/3 of the points, giving credance to the concept that 1.53 is the most probable value, with 7 percent being the standard deviation.

3. 2 Particle Shape

Electron and light microscopes have been used to obtain very useful particle-shape information on many of the powders currently under study. Figures 3.6 through 3.16 contain micrographs of tale, saccharin, egg albumin, powdered milk, Sm. powdered sugar, and cornstarch. Although the micrographs "speak for themselves", it is interesting to note the unique, jagged, plate-like structure of tale because compacted tale displays much greater elasticity than any of the other powders under study. The micrographs indicate a complete range of shape characteristics from the irregular structure of tale to the smooth, nearly spherical structure of cornstarch. Figure 3.13 dramatizes the wide range of particle sizes found typically in Sm samples.

Figure 3.5 Uncertainty in BET Plot of N2 Adsorption by Saccharin

3-20

Page determined to be Unclassified Reviewed Chief, RDD, WHS IAW EO 13526, Section 3.5 Uate: APR 1 5 2013.

i.

Figure 3.6

Powder Ground Talc	MMD (Whitby)	1.75 microns
Method of Dispersion Aerosol cloud	formed by hand syri	ngė.
Gravitational settling of powders upor	n a specimen grid.	
Magnification 30,000X (microscope).	2.5X (enlargement)	; 75,000X total
Micrograph No. 63-2-71		· · · · · · · · · · · · · · · · · · ·

Figure 3.7

Powder Ground Talc	MMD (Whitby) 1.75 microns
Method of Dispersion Gravitations	il settling in an aerosol chamber upon a
specimen grid. Aerosol formed b	y hand syrings.
Magnification 30,000X (microscope	e): 2.5X (enlargement): 75,000X total
Micrograph No. 63-4-5	

Figure 3.8

Powder Ground Talc	MMD (Whitby) 1.75 microns
Method of Dispersion Particles	dispersed in liquid maphtha. Suspension
liquid sprayed on specimen grid	with reason Type VL Airprush.
Magnification 10,000X (microso	cope); 2.5X (enlargement); 25,000X total
Micrograph No. 63-4-43	
(specimen grid s height to length	hadow cast with chromium at a 3 to 5 ratio)
	3 - 23 Page determined to be Unclassifie

Reviewed Chief, RDD, WHS IAW EO 13526, Section 3.5 Uate: ADD 1 5 701

Figure 3.9

Powder Ground Talc	MMD (Whitby) 1.75 microns
Method of Dispersion Naphtha disp	persed suspension sprayed on specimen
grid with Paasch Type VL Airbrush	ı (15 at 10 ysi).
Magnification 10,000X (microscop	e): 2.5X (enlargement); 25,000X total
Micrograph No. 63-4-44 (Specimen grid shad to length ratio.)	dow cast with chromium at a 3 t0 5 heigh

Page determined to be Unclassified Reviewed Chief, RDD, WHS IAW EO 13526, Section 3.5 Date: APR 1 5 2013

Figure 3.10

Powder Ground Saccharin	MMD (Whitby)	6.9 microns
Method of Dispersion Dispersed in na	aphtha; sprayed on	grid with a
Paasche Type VL Af. orush (15 in. an	1 10 p=!)	
Magnification 10,000% (microscope);	2.5X (enlargement); 25,000X total
Micrograph No. 63-4-52 (Specimen grid shadow to length ratio.)	· ·	urn at a 3 to 5 height

Page determined to be Unclassified Reviewed Chief, RDD, WHS IAW EO 13526, Section 3.5 Uate: APR 1 5 2013

Figure 3.11

Powder Ground Egg Albumin	MMD (Whitby)	4.8 microns
Method of Dispersion Dry powder di	spersed on specime	n grid with a
Paasche Type VI. Aurbrush (15 in a	and 40 pai).	
Magnification 10,000X (microscope); 2.5X (enlargemen	t); 25,000% total
Micrograph No. 63-4-48		
(Specimen grid shado to length ratio.)	w cast with chromiu	rn at a 3 to 5 height

Figure 3.12

Powder Ground Powdered Milk	MMD (Whitby) 7.0 microns	
Method of Dispersion Dispersed in na	phtha; sprayed on grid with a Pa	asche
Type VL Airorush (15 in. and 40 pai)		
Magnification 10,000X (microscope);	2.5X (enlargement); 25,000X to	tal
Micrograpa No. 63-4-51 (Specimen grid shadov to length ratio.)	w cast with chromium at a 3 to 5	height

Figure 3.13

Powder Sm (Pool # 7)	MMD (Whitby) 6.4 microns
Method of Dispersion Dispersed in na	phtha; sprayed on specimen grid with a
Paasche Type VL Airbrush (15 in. a.	nd 40 psi).
Magnification 3,000% (microscope); 2	.5X (enlargement); 75,000X total
Micrograph No. 63-4-59	

Figure 3.14

Powder Sm (Pool # 7)	MMD (Whithy) 6.4 microns
Method of Dispersion Dispersed in bu	tyl alcohol; sprayed on glass slide
with airbrush (15 in. and 40 psi).	
Magnification 400X (light microscope);	2.5X (enlargement); 1,000X total
Micrograph No. 63-B-11	

Figure 3.15

Powder Powdered Sugar	MMD (Whitby) 34.5 microns
Method of Dispersion Dispersed in buty	ol alcohol: sprayed on glass slide
with a Paasche Type VL Airbrush (15.	in. 40 psi).
Magnification 400X (light microscope):	2.5X (enlargement): 1,000X total
Micrograph No. 63-A-31	

Figure 3.16

Powder Unground Cornstarch	MMD (Whitby)	12.2 microns	
Method of Dispersion Dispersed in b	outyl alcohol: spraye	d on a glass slide	
with a Paasche Type VL Airbrush (15 in. and 40 psi).		
Magnification 400X (light microscope	e): 2.5X (enlargemen	t): 1,000X total	
Micrograph No. 63-B-14			

3.3 Agglomerate Strength

We reported previously ⁽⁹⁾ that the energy-of-compaction apparatus was being used in an attempt to measure the strength of agglomerates in a powder bed. The results to date are not encouraging. Experimental conditions sensitive enough to measure agglomerate strengths also pick up background noise, vibrations, and minor powder bed nonuniformities, thus obscuring the desired information.

3.4 Powder-to-Metal Friction

The use of graphite to reduce powder-to-metal friction is discussed in various sections in this report. Graphite or graphite-like materials seem to be unique in their ability to reduce greatly this frictional force. A study will soon be made to determine criteria for methods of application and the smoothness of metal surfaces necessary to optimize this property.

3.5 Particle-Size Analysis of the Swirl Disperser's Output

To determine if grinding of powders is taking place in the swirl dispenser used in the aerosol studies (see Section 4.4 of this report), Whitby size analyses were determined on representative samples obtained from the dispenser.

The method of sampling consists of coupling a 5-liter flask to the output of the swirl dispenser by means of a short tube. The tube extends into the flask and is immersed in a settling liquid about two inches deep. The settling medium used is the same as that used in the Whitby technique for the powder in question. The swirl dispenser was operated at 250 psi of nitrogen applied to the gas inlets for 5 seconds.

After a run, the settling medium containing the powder was concentrated by centrifugal force. The supernatant liquid was decanted and the remainder was diluted with naptha to a predetermined ratio. The mixture was then used as the feeding liquid for Whitby size analysis.

The results obtained were as follows:

	Original Sample		Dispersed Sample	
	MMD	Std. Dev.	MMD	Std. Dev.
Saccharin	6.7µ	1.50	6. 7µ	1.47
Powdered Sugar	32 µ	2.07	32 µ	1.60

We determined from these analyses that little, if any, grinding is taking place in the disperser.

4. AEROSOL STUDIES

During this period, a program of research was initiated to study the effects of atmospheric charge conditions on aerosol decay. Ion concentration in the aerosol chamber was varied by introducing large quantities of positive ions at selected times in an aerosol's history by means of a coronadischarge ion generator. Other tests were conducted in addition to the electrostatic-charge runs and are discussed later in this section.

4. 1 Description and Operating Characteristics of the Corona-Point Ion Generator

The general operating characteristics of corona-discharge ion generators are discussed at some length in the literature and will be treated only briefly here. The specific design of the unit used was developed by General Mills, Inc. personnel on another contract, and a detailed description may be seen in the associated reports. (3) The corona point ion generator is shown schematically in the accompanying sketch.

Figure 4. 1 Corona-Point Ion Generator

When a voltage is applied to the corona needle, a high electric field is established at its point. The strength of this field is directly proportional to the applied voltage and inversely proportional to the radius of the needle's tip. For a suitable combination of tip radius and applied voltage, the electric field strength in the immediate neighborhood of the point is great enough to cause ionization of the gas molecules in that region. In the case where the needle is positive, the resulting negative ions (presumably free electrons) are collected at the needle after traveling a short distance. The positive ions drift toward the grounded base plate at a velocity governed by the electric field and the ion mobility. If a gas is admitted through the gas inlet, a "sink flow" of gas developes at the exit orifice. At sonic operation, the velocity of this flow is such that a large fraction of the positive ion current is swept out through the orifice and into the region beyond the base plate.

The ionizer used in the present work has a needle sharpened to a tip radius of about one micron. The needle spacing s is 1.8 mm, and the orifice diameter g is 0.79 mm. Dry nitrogen is used as the ionizing gas. We measured the free ion current output of the device by collecting the ion current in a 51-cm long by 1-cm ID copper tube mounted coaxially and spaced about 1/8 inch from the base plate. The results are shown in Figure 4.2, which also presents the gas-flow rate.

The ion gun is mounted in the chamber in a position diametrically opposite the dispersing gun, as shown in the following sketch. Both guns are exterior to the chamber. The base plate of the ion gun is electrically connected to the aluminum aerosol chamber, which in turn is connected to permanent ground. The ions that leave the gun are eventually collected on the chamber's walls. (See Figure 4.3.)

We have made measurements of current densities at equilibrium flow, a rough map of which is shown next. Note that a large fraction of the free ion output is collected on the floor of the chamber near the conizer. Somewhat smaller current densities exist at other points in the chamber. (See Figure 4.4.)

Figure 4.2 Characteristics of the Corona-Discharge Ion Generator

Page determined to be Unclassified Reviewed Chief, RDD, WHS IAW EO 13526, Section 3.5

Date: APR 1 5 2013

Figure 4.3 Position of Ion Gun with Respect to Dispersing Gun in the Aerosol Chamber

4-4

Page determined to be Unclassified Reviewed Chief, RDD, WHS IAW EO 13526, Section 3.5 Uate: APR 1 5 2013

Figure 4.4 Map of Ion Current Densities in Aerosol Chamber

4.2 Procedure for Electrostatic-Charge Runs

The series of runs to be reported here all involved dispersing of 100 ± 5 mg of powder into the chamber with either simultaneous (Mode B) or subsequent (Mode C) injection of positive ions. These runs are to be compared to runs where no charge was injected (Mode A). The procedure for each of the series is indicated in the diagram. (Figure 4.5)

The time scale for each mode of operation is started when the ionizer gas is turned on. In each case, the swirl powder disperser was operated for a 5-second interval starting 10 seconds after the ionizer gas. The swirl disperser was operated at 60 psi. The difference between the modes of operation lies in the application of high voltage for the corona needle; it is this voltage which causes ion production. In Mode A no ions are injected; in Mode B ions are injected simultaneously with the powder for a 10-second interval; in Mode C lons are injected for 10-second intervals after powder injection (see Figure 4.5).

The gas pressure in the ionizer for the runs to be reported was 30 psi, and as the high voltage was set at 6000 volts, one can now see by referring to Figure 4.2 that the volume of gas admitted was 10.2 liters and that the total charge injected was about 2.5 x 10^{-6} coulombs (1.5 x 10^{13} unicharged ions). On the other hand, the powder disperser admitted 3.6 liters of gas and about 100 mg of powder ($\sim 10^9$ particles of 5- μ diameter). The number of positive ions introduced per particle of powder is therefore approximately 10^4 .

We have, of course, no guarantee that there is actually a combination of powder particles and injected ions. One might expect some fraction of the powder particles that descend into the chamber bearing negative charge to be neutralized. The extent of this discharging is not known, however, at the present time. The experiment is to be viewed simply as one in which the aerosol particles are exposed to an abnormally large concentration of positive ions.

The aerosol experiments were carried out under conditions of room humidity, which remained relatively constant throughout a given series of runs.

Figure 4.5 Modes of Ion Injection

4.3 Experimental Results

Electrostatic charge runs have been made on talc and saccharin. Each powder was run through the sequence of Modes A-B-C-A twice, the two series involving different humidity conditions. The light-scattering data from each run were reduced by the log-normal plot procedure explained previously. The half lives and initial amplitudes of the various aerosols are shown in Figures 4.6 and 4.7.

The data points in Figures 4.6 and 4.7 are collected into groups according to prevailing humidity. Each group of points represents 4 aerosol runs (only 3 in one of the saccharin series) carried out under "identical" prevailing humidity conditions. The fourth point in each group is a rerun of the no-charge conditions of the first point and is thus a check on reproducibility.

The data of Figures 4.6 and 4.7 can be summarized as follows:

4. 3. 1 Talc Aerosols

The injection of positive ions simultaneously with the injection of powder reduces acrosol longevity under the no-charge condition; the injection of positive ions after injection of the powder further reduces acrosol longevity.

4. 3. 2 Saccharin Aerosola

The injection of positive ions simultaneously with the injection of powder increases longevity, whereas ion injection after powder injection reduces longevity, under the no-charge injection condition.

It should be noted that there is an element of risk in drawing the above conclusions from the data available because the reproducibility is not as good as one might hope for. It is quite evident, however, that the stabilities of aerosols are affected by the radical atmosphere charge conditions employed here. In view of this, it may be necessary to modify certain statements advanced previously regarding the effect of electrostatic charge on aerosol decay.

The study will be continued during the next quarter.

Figure 4.6 Half Lives, Initial Amplitudes, and Prevailing Humidity for Tale Aerosol Electrostatic Charge Runs

1:

Figure 4.7 Half Lives, Initial Amplitude, and Prevailing Humidity for Saccharin Aerosol Electrostatic Charge Runs

4.4 Sampling of Swirl Disperser's Output

One of the questions which has plagued the aerosol program for some time is whether grinding takes place in the dispersing process. During the past quarter, tests were made in which the entire output of the swirl dispenser was collected and submitted to Whitby sedimentation size analysis. The collection technique is discussed in Section 3.4 of this report. For the two powders tried--saccharin and powdered sugar--the size distributions of the swirl-dispersed samples were nearly identical to the size distributions of the stocks from which the samples were taken.

In another study of the swirl-dispenser performance, the dispersing gas-flow rate was measured by means of a capillary tube flowmeter. The results, somewhat higher than has been anticipated, are shown in Figure 4.8.

Figure 4.8 Gas Flow Characteristics of the Swirl Disperser

5. EXPERIMENTS USING GRAPHITE TO REDUCE SIDE-WALL FRICTION OF COMPACTED POWDER SLIDING IN CYLINDERS

At the Fourth Coordination Meeting on Dissemination Research held at Fort Detrick in May, 1963, Mr. Eugene Flurie described some compacted powder experiments conducted at the Biological Laboratories in which graphite was used successfully on the walls of a small cylinder to reduce friction. Since side-wall friction is an important consideration in developing equipment to handle compacted dry-agent materials, an investigation of the use of graphite to reduce friction was started at General Mills, Inc. Most of our interest in lowering side-wall friction relates to the performance of the E-41 spray tank and its associated loading equipment. During the development of these items, a number of experiments were performed which provided data on the force required to move a mass of compacted powder out of the cylinder in which it was compacted. Some of these experiments were repeated during May and June using graphite as a lubricant on the cylinder's walls. The results were very gratifying. Use of graphite has lowered frictional force by approximately 50 percent. Experimental procedures employed and results obtained are discussed in the following paragraphs.

5.1 Procedure

The data reported herein were obtained in three sets of experiments: Two sets of tests were conducted in May and August, 1962, during a determination of the forces likely to be encountered in compacting and loading dry-powder charges into the E-41 spray tank. These tests provided data on density as a function of compactive pressure, and on the force required to push a body of compacted powder out of a cylinder as a function of compactive pressure and the cylinder's length-to-diameter ratio. A 6-inch diameter aluminum cylinder was used in tests with Mistron Vapor tale, and a 7.5-inch cylinder was used with powdered sugar, flour, and powdered milk.

For the third set of experiments, the tests with talk and powdered sugar were repeated in a 6-inch cylinder, using graphite to lubricate the cylinder's walls. These experiments were conducted during the latter part of May and early June, 1963. Their objective was to determine the effectiveness of graphite in lowering side-wall resistance to the sliding of compacted powder.

The experimental procedures were the same for all three sets of tests. The powder was pressed into the cylinder using the arrangement shown schematically in Figure 5.1. During compaction, force was applied for a sufficiently long period of time to allow entrapped air to pass through the felt pad and air holes incorporated in the compacting piston. The compactive force was measured on the platform scale. After completion of the filling operation, the cylinder was raised off the base plate with spacers so that the body of compacted powder could be pushed down out of the cylinder. The force required was measured on the platform scale, and the cylinder was kept vertical at all times,

When filling the cylinder, we added powder in increments and applied specified compactive force after each addition. One-half pound increments were used with tale, and one-pound measures with powdered sugar. The total amount of powder was varied so that different lengths of compacted powder specimens were obtained. The length-to-diameter ratios employed ranged from 0.7 to 2.5. The compactive pressures ranged from 3.5 to 13.1 psi.

The graphite used to lubricate the cylinder wall was wiped on with a piece of chamois skin when applied dry. This was the case for most of the experiments. A few trials were made in which the graphite was mixed with a liquid and sprayed on with a small spray can. The film was allowed to dry before we filled the cylinder with powder. Water, alcohol, and trichloroethylene were tried as vehicles for applying the graphite as a spray.

Two brands of finely-divided graphite were used. Their particle sizes were not known, but we plan to make size determinations. One brand was "620" powdered amorphous graphite from the American Graphite Company, Ticonderoga, New York. The other was "Microfyne" lubricating flake graphite from the Joseph Dixon Crucible Company, Jersey City, New Jersey. There was no discernible difference in performances of the two brands.

Figure 5.1 Schematic Diagram of Arrangement Used to Compact Powder into a Cylinder and to Determine the Force Required to Translate the Compacted Powder through the Cylinder

5.2 Results

The results of the experiments are presented in Figures 5. 2, 5. 3, and 5. 4, where the force to eject the body of compacted powder is plotted against the length-to-diameter ratio of the body of powder. Although the ejection force was measured directly in pounds, it has been converted to pounds per square inch to permit a comparison of the results obtained with the 6-inch cylinder to those from the 7.5-inch cylinder. In both Figures 5. 2 and 5. 3 there are two sets of data plotted. The results from the plain aluminum cylinder are represented by dashed lines, and those from the graphite-coated cylinder are depicted with solid lines. Each point represents a single test.

The data from the trials with talc are presented in Figure 5.2. It is clearly evident that the use of graphite to lubricate the cylinder produces an appreciable reduction in side-wall friction. These data also indicate that the percentage of reduction is greater for the larger length-to-diameter ratios than it is for the smaller ratios. This was observed for both compactive pressures employed in the trials. For the 5.3 psi pressure, the percentage of reduction was 49 percent at a length-to-diameter ratio of 1.5, increasing to 55.7 percent at a length-to-diameter ratio of 2.3. For the 3.53 psi compactive pressure, the percentages of reduction at the respective ratios were 28.8 and 49.

It will also be observed that the percentage of reduction in ejecting pressure is greater at a higher compactive pressure than at a lower one. (This is undoubtedly related to the higher density produced by the higher compactive pressure.) For a length-to-diameter ratio of 2.3 and a compactive pressure of 3.53 psi, the use of graphite resulted in a 49 percent reduction in ejecting pressure whereas the percentage of reduction was 55.7 percentat a pressure of 5.3 psi.

An examination of the data presented in Figure 5.3 for powdered sugar shows the same general pattern. Here again, the use of graphite to lubricate the cylinder's walls before packing in the powdered sugar resulted in a significant reduction in the force required to push compacted powder out of the cylinder.

Figure 5.2 Comparison of Force to Eject Compacted Tale from a 6-inch Diameter Aluminum Cylinder with and without Graphite

Figure 5. 3 Comparison of Force to Eject Compacted Powdered Sugar from a 6-inch Diameter Aluminum Cylinder with Graphite and a 7.5-inch Diameter Aluminum Cylinder without Graphite.

Figure 5. 4 Comparison of Force to Eject Compacted Tale from a 6-Inch Diameter Aluminum Cylinder for Various Methods of Applying Graphite for Lubrication

The percentage of reduction in force was more for the large length-to-diameter ratios than for the small. The data for the graphite-lubricated cylinder showed less scatter than that for the plain aluminum cylinder. This could be interpreted as a further indication that frictional effects are alleviated by the use of graphite.

As was pointed out in the discussion on procedures, the graphite powder was applied dry with a chamois skin for most of the trials. This was the method of application employed for the data presented in Figures 5.2 and 5.3 A few trials were made in which the graphite was suspended in a liquid and then sprayed onto the surface. The liquid was then allowed to evaporate before filling the cylinder with powder (Mistron Vapor tale was used). Water, alcohol, and trichloroethylene were tried as vehicles. We found that all three systems deposited graphite satisfactorily on the cylinder's wall. Data from the trials using the spray technique are presented in Figure 5.4 with comparable data for dry trials with tale. All of the data points for the sprayed graphite trials were found to be slightly below the curve for the trials where the graphite was applied dry. The results obtained when trichloroethylene was used are especially encouraging and suggest that a technique for applying graphite may be discovered that will result in even lower side-wall friction.

In view of the encouraging results obtained with the 6-inch diameter cylinder, we decided to experiment with the loader used for filling the E-41 spray tank with compacted powder. This loader is described in the Ninth Quarterly Progress Report. (2) The loading tube is 16-3/16 inches in diameter and 36-5/8 inches long. It contains sufficient material to fill one end of the E-41 spray tank in a single loading operation.

The loading tube is made of aluminum that has been hard-coat anodized and then coated with a dry-film lubricant. Experience has shown that an air pressure of from 30 to 35 psig behind the piston is required to force the compacted powder out of this tube.

In preparation for the experiment with graphite lubrication, the tube was cleaned of powder from previous loading operations by a light rubbing with steel wool. Then the graphite was wiped on with a chamois skin, and Mistron vapor tale was packed into the tube to an average density of $0.63~\mathrm{g/cm}^3$.

The loading tube was then positioned horizontally, and the talc was pushed out and allowed to fall into a barrel. A pressure of 12 psig was sufficient to force the talc out of the tube. This particular experiment has not been repeated, but graphite lubrication was used subsequently in filling the E-41 spray tank with talc prior to shipment to Eglin Air Force Bass. During this operation a pressure of 20 psig was observed on three occasions. Both the 12 psig and 20 psig pressures are substantial improvements over the 30 to 35 psig previously required.

5.3 Conclusions

Although only a limited amount of data has been obtained on the use of graphite to reduce side-wall forces associated with moving a charge of compacted powder in a cylinder, the results are significant enough to warrant reporting them at this time. The tests with the 6-inch cylinders showed a reduction in force of approximately 50 percent when graphite is used to lubricate the cylinder's wall. One test with the 16.5-inch cylinder showed a 60-percent reduction in the force (from 30 to 12 psi) required to push a charge of compacted tale out of this cylinder. Subsequent experience in loading for the Eglin tests indicates that a reduction of approximately 35 percent may be more reasonably expected.

As a consequence of the good results obtained thus far with graphite, further work in this area is planned. More tests with 6-inch cylinders will be conducted. One area of special interest is the influence of initial surface roughness on frictional forces when graphite is used as a lubricant. Full-scale tests with the experimental disseminator are also planned.

6. DISSEMINATION AND DEAGGLOMERATION STUDIES

6.1 General Approach

li

During this period, studies were continued on the deagglomeration of dry, finely divided Sm simulant. Wind-tunnel tests were conducted to investigate two factors: dissemination at low flight speeds, and dissemination of material stored in the compacted state.

6.2 Dissemination at Low Flight Speeds

Prior to this time, we have been concerned with the feasibility of deagglomerating finely divided Sm at flight speeds of Mach number 0.5 to 0.8 (330 to 528 knots). Results from wind-tunnel tests showed that the material could be mechanically disaggregated and disseminated with high physical efficiency at these speeds. Our study has now been extended to cover flight speeds below Mach number 0.5. We have determined the minimum speed for efficient dissemination of uncompacted material, and have conducted a thorough investigation at Mach number 0.3.

During these tests, we employed the same zerosol-sampling techniques described in an earlier report. Full-flow impactor tests provided a qualitative measure of the presence of very large agglomerates (100 to 500 microns in diameter) in the zerosol, whereas collection of fine highly deagglomerated material on membrane filters provided quantitative data from which the limiting bulk-density condition could be determined. For this purpose, the high-velocity sampling probe was located 0.5 inch from the bottom tunnel wall.

The <u>Sm</u> used in this study was taken from lot S1-Sm-342, the same lot used in our previous tests. The moisture content of this simulant has increased to 2.6 percent from a value of 1.7 percent which it had during many of our earlier tests. This change does not, however, appear to be affecting the deagglomeration efficiency.

The results of these tests at Mach number 0.3 are shown in Figure 6.1. The measurements indicate that the concentration of fine, deagglomerated acrosol is essentially independent of bulk density in the range 0.33 to 0.52 g/cm³. Above this range, however, the quantity of material in the fine acrosol cloud decreases. Conversely, the impactor results indicate that as the bulk density exceeds 0.52 g/cm³ an increasing percentage of the acrosol is comprised of large agglomerates that do not readily break up. This value, therefore, represents the limiting condition for a flight speed of Mach number 0.3.

With the uncompacted material, we found that very good break-up can be obtained at a flight speed of Mach number 0.25. As the air velocity was decreased below this value, the large agglomerates became increasingly prominant.

6.3 Efficient Desgglomeration with the E-41 Aircraft Disseminator

Results that have been obtained with the wind-tunnel apparatus are combined in this section to define more clearly the relationship between flight speed and compactive density for a disseminator of the E-41 type. The maximum bulk density that can be deagglomerated efficiently was determined from concentration curves such as that shown in Figure 6.1. Those for Mach number 0.5 and 0.8 were discussed in Reference 2. For this purpose, we determined the "break point" for each curve; break point is defined as the bulk density at which the fine aerosol concentration decreases to 95 percent of its maximum value for a particular series of tests. Figure 6.2 and Table 6.1 show the break points for runs at Mach numbers of 0.3, 0.5, and 0.8. At the break point, deagglomeration efficiency is approximately 90 percent—that is, 90 percent of the particles that originally had diameters in the 1— to 5-micron range are dispersed in the same size range by the disseminator. Microscopic analyses of filter samples and full-flow impactor collections have been used to determine this value of efficiency.

Figure 6.1 Concentration of Fine Sm Aerosol Cloud in Wind Tunnel as a Function of Bulk Density (Airstream Mach Number 0.3; Sampling Probe Positioned 0.5 Inch from Wall)

Figure 6.2 Concentration of Fine Sm Aerosol Cloud in Wind Tunnel as a Function of Bulk Density and Airstream Mach Number (Sampling Probe Positioned 0.5 Inch from Wall)

Table 6.1 Break Points for Dissemination Tests with Compacted Sm at Wind Tunnel Mach Numbers of 0.3, 0.5, and 0.8

Mach Number	Bulk Density (g/cm ³)
0.30	0. 52
0.50	0.58
0.80	0. 59

In Figure 6.3 the break points are plotted against dissemination flight speed. Also, the minimum flight speed is shown for uncompacted Sm. This curve defines the operational region in which the E-41 is expected to be very effective in deagglomerating compacted materials. In the bulk density range 0.3 to 0.5 g/cm3, the curve is quite flat because the energy of compaction is low (see Figure 6.4). In mechanically disaggregating the compacted slug prior to dissemination, the material is essentially returned to its original condition. Consequently, dry Sm compacted to 0.5 g/cm is as easy to deagglomerate as the uncompacted material. As density increases above 0.5 g/cm⁵, the binding energy of the particles increases very rapidly, as shown in Figure 6.4. In this range the mechanical disaggregator produces material which consists of an increasing percentage of large, strong agglomerates with diameters in the 100 to 1000 micron size range. These are quite difficult to deagglomerate with fluid energy, and the flight speed requirement therefore increases very rapidly above a density of 0.55 g/cm⁵. For this material, the maximum density that can be disseminated with high efficiency is 0.59 g/cm³ at high subsonic flight speeds.

It is apparent that the curve shown in Figure 6.3 will shift somewhat for each agent. Different lots of Sm have been shown to be either more or less difficult to disseminate in the compacted state, depending greatly on the compaction energy-density relationship shown in Figure 6.4. We therefore believe that measurement of this parameter will be one method used to predict the flight-speed requirements for various agents. Both the shape of the resulting curves and their absolute values indicate the binding energy of compacted materials which must be overcome during the dissemination process.

Figure 6.3 Flight Speed Required for Dissemination of Dry, Compacted Sm Simulant (Lot S1-Sm-342) at Approximately 90 Percent Deagglomeration Efficiency

Figure 6. 4 Energy Required to Compact Sm (Lot S1-Sm-342)

6.4 Dissemination of Stored Sm in the Compacted Condition

At an earlier date, dissemination tests were conducted on <u>Sm</u> simulant that had been stored in the compacted condition at -18 C for 10 weeks. The results indicated that this material was somewhat more difficult to deagglomerate than similar material, which had not been stored. Since storeage is an important factor, a larger test program was planned and initiated during this period. The program is divided into two parts--namely, wind-tunnel deagglomeration tests, and viability tests.

6.4.1 Wind-Tunnel Deagglomeration Tests

The dissemination and deagglomeration test constitutes $2 \times 3 \times 6$ factorial with duplicate runs for each treatment. The variables investigated include

Storage Temperature

-2 C -23 C

Storage Bulk Density

- 0.33 g/cm³, uncompacted
- 0.57 g/cm³ 0.61 g/cm³
- _

Storage Period

- 0.04 day
 - l day
 - 7 days
 - 30 days
 - 91 days
- 182 days

We are using our standard methods for generating and assessing aerosols. They include the GMI-3 dissemination fixture, and the isokinetic sampling probe and full-flow impactor-collection systems.

For this series of tests Sm lots 61-26 and 61-28 are being used. The material has a MMD of 9.5 microns. In preparing the samples, Sm is compacted into storage cylinders of 0.75 inch diameter in a dry, controlled atmosphere. The containers are sealed securely during the storage period.

At the present time tests have been conducted for all time periods through 30 days. The results indicate that there is no significantly detrimental effect of storage on deagglomeration efficiency. Material that can be deagglomerated immediately after being compacted also can be effectively deagglomerated after storage at -2 C or -23 C.

6. 4. 2 Storage Viability Tests

The samples prepared for the above tests are also used in a study of the effect of storage on viability. The same variables are investigated, but the test has an additional seven time periods and therefore consists of a $2 \times 3 \times 13$ factorial. The time variable includes

Storage Periods

0.04 day	30 days
l day	61 days
3 days	91 days
5 days	122 days
7 days	152 days
14 days	182 days
21 days	

Samples of these tests are taken after the slugs have been mechanically disaggregated. Our standard method of biological assay is used, and a Waring blender is employed to break-up the compacted clusters of material. Each analysis has an uncompacted control, which is stored at -23 C.

As in the former case, the results to date do not indicate a significant decrease in viability after storage periods of 30 days. Detailed results of this program will be presented in the next progress report.

7. E-41 SPRAY TANK

During the quarterly report period, work related to the E-41 Spray Tank continued in the Development Engineering Department. Considerable progress was made in the fabrication of the second unit. Minor design changes are being incorporated in this second unit as well as in the first air-borne E-41. Some of these modifications will make it possible to fill the unit with loose powder by inserting a filling tube through the end plate and piston. The arrangement of components within the discharge shroud has been modified to provide improved decontamination features. Plans were initiated for flight tests of the E-41 Spray Tank at Eglin Air Force Base on the F-100 and F-105 airplanes.

7.1 Fabrication of the Second E-41 Spray Tank

A second E-41 Spray Tank is being fabricated for use in future flight-test programs. In view of the high degree of success experienced with the first airborns E-41, there will be no major design changes in the second unit. The minor modifications which are being incorporated in the second unit are of such a nature that they will also be made on the first unit. Thus, both E-41 Spray Tanks will be similar. Completion of the second unit is scheduled for June.

7. 2 Improved Arrangement of Components within Discharge Shroud

The shroud surrounding the discharge tube on the bottom of the E-41 Spray Tank serves as an enclosure for components associated with the discharge valve's operation. The shroud also streamlines the discharge tube and separates the aerosol stream from the spray tank. The initial design for this area was somewhat deficient in that it was difficult to decontaminate. This area has been redesigned, and the improved features are being incorporated in both E-41 Spray Tanks.

7-1

TONFIDENTIAL-

MERCHAND

In the revised design, all the electrical components such as the motor and limit switches are enclosed by a sealed cover or housing as shown in Figure 7.1. All of the wiring leading from the disseminator proper to these components is contained in a single sealed cable assembly. The connector is mounted in the cover. The squib wires and the arming wire are connected by means of terminal strips mounted externally on the cover. Since the sealing assembly (which is missing in Figure 7.1) on the discharge tube contains the squibs and arming wire and must be replaced after each mission, these wires can be disconnected at the terminal strips during the decontamination procedure.

7.3 Removal of Heater and Low-Pressure Switch

1

Experience with the E-41 Spray Tank has shown that the unit can be operated satisfactorily without the heating jacket on the high-pressure nitrogen tank. The heating jacket has been operating satisfactorily to date, but tests have shown that the tank has adequate capacity to supply a sufficient volume of nitrogen without heating. The heating jacket will therefore no longer be used on the nitrogen tank.

The Eleventh Quarterly progress report contains a discussion of the performance of the low-pressure switch during the flight trials at Dugway Proving Ground last January. An analysis of the spray tank's performance, taking into consideration the airplane's flight-altitude changes during the trials, led to the conclusion that the switch was operating untimely to cause a short delay in the start of dissemination. In as much as the jamming condition which this switch was intended to protect against has never occurred, a decision was made to eliminate the switch. The mounting holes for the switch in the end plate will be sealed with plugs.

7.4 Addition of Filling Holes in Pistons and End Plates

Because the E-41 Spray Tank is capable of disseminating dry agent material from the loose bulk state as well as the compacted state, there is justification for incorporating filling holes in pistons and end places for loading loose

7-2

COMPRESENTATION

DECLASSIFIED IN FULL
Authority: EO 13526
Chief, Records & Declass Div, WHS
Date:
APR 1 5 2013

Figure 7.1 Sealed Housing for Components within the Discharge Shroud

7-3

DECLASSIFIED IN FULL
Authority: EO 13526
Chief, Records & Declass Div, WHS
Date: \$\int_{1}^{4} 5 \text{ APR} \text{ 2013}

CONFIDENCIAL

powder. Filling holes have been added to the end plates of both E-41 Spray Tanks. Corresponding holes have been made in the pistons of the units so that a filling tube can be inserted into the tanks.

The holes in the pistons are three inches in diameter, and the holes in the end plates are 3.25 inches so that the plug for the pistons can be removed through the holes in the end plates. The closures in the end plates are sealed with two O-rings.

7.5 Flight Tests at Eglin Air Force Base

In May 1963 Detachment 4, ASD, Weapons Laboratory (ASQWC) Eglin Air Force Base requested that the E-41 Spray Tank be made available to them for flight tests on the F-100D and the F-105 airplanes. It was subsequently decided by Fort Detrick that an E-41 would be shipped from General Mills, Inc. to Eglin Air Force Base for this purpose. The tests are scheduled to begin during the latter part of June.

These flight trials are intended to demonstrate the compatibility of the spray tank with the F-100D and the F-105, and procedures for assaying ground coverage resulting from dissemination of simulants are not included in the plans. The unit will be loaded with talc, which will be disseminated during the trials.

8. PREPARATIONS FOR FLIGHT TESTS OF THE E-41 SPRAY TANK ON THE MOHAWK AIRCRAFT

On 11 March 1963 Mr. Gordon R. Whitnah of General Mills, Inc. visited Lt. Col. Vincent Ulery, Army liaison Officer at the Navy Bureau of Weapons, and Mr. R. Groundwater at the Mohawk Project Office in Building T-7 to discuss plans for flying the E-41 Spray Tank on the AO-1 Mohawk airplane. On 28 March 1963 engineers from General Mills, Inc. met with Mr. John Coursen, Mohawk Project Engineer, and with several other Grumman personnel at the Grumman Aircraft Company, Bethpage, Long Island. During this visit General Mills, Inc. obtained engineering data pertaining to the installation of the E-41 on the Mohawk.

The weight and size of the E-41 present no apparent problems, but it will be necessary to carry two units or one E-41 and one 150-gallon fuel tank to obtain symmetrical loading. This decreases the maximum obtainable speed but is necessary for flight stability. The maximum dissemination velocity will be in the 200 to 240 knot range. Wind-tunnel experiments reported in Section 6 of this report indicate that BW agents can be successfully disseminated and aerosolized at this air speed.

The spray tank will be mounted on the Aero 65 A pylon at wing station 185. If only one unit is flown, it appears that the left-hand pylon (as viewed from the front) is the preferable location because of the tendency of the proposah to move from right to left.

A cruciform tail is used on the 150-gallon fuel tanks flown on the AO-1 Mohawk. The major reason for this is to stabilize the store when it is released from the pylon upon jettisoning. Because the empty weight of the E-41 is significantly greater than the empty weight of the fuel tank, it should not be necessary to use the cruciform tail. However, since the cruciform tail is the accepted design and there is no strong objection to using it on the E-41, a decision was made to provide an interchangeable aft section with cruciform tail for the E-41 Spray Tank when flown on the Mohawk airplane. Details of this four-finned tail section are shown in GMI drawing SK 29100-1305 in Appendix B.

CAMPBETTER

Installation of the E-41 on any particular Mohawk aircraft will require rewiring of the wing, pylon, and control box. Since a free-fall jettison system is employed, a pig tail with quick-release connector is needed for the spray tank to insure positive separation from the pylon wiring. There is ample room for the E-41 control panel in the airplane's cockpit. Grumman expressed a willingness to perform the wiring modifications on the test airplane provided they are paid for their services.

Further progress on the Mohawk flight-test program is dependent upon the establishment of dates for the flights by the Mohawk Project Officer in Washington, D. C.

8-2

DECLASSIFIED IN FULL Authority: EO 13526 Chief, Records & Declass Div, WHS

Date: 1 5 APR 2013

9. SUMMARY AND CONCLUSIONS

The improved multipurpose test unit is now being used to measure shear strength, tensile strength, and bulk density within the confines of a single isolator lab. The fact that reproducible results are being obtained with this unit is indicated by the data presented for several powders. "Rulon" slip agent and graphite have been tried on the mold used to form the "necked-down" speciments for the triaxial tensile test. Three supposedly identical Sm samples have been found to exhibit distinctly different compaction characteristics. Tests for particle size distribution, particle density, and moisture content are being conducted in an effort to explain the differences in the behavior of these Sm samples. Whithy particle-size determinations have shown that a change in size distribution toward a smaller MMD occurred when saccharin was compacted to a compressive stress of 2.84 x 10⁴ dynes/cm². It has been found that the addition of 0.25 to 5.0 percent Cab-o-Sil to powders causes a significant increase in the compaction stress required to produce a given bulk density.

Experiments were performed to determine the time required for the fluid bed to equilibrate. Even though extensive agglomeration occurs, particle-size analyses performed on samples taken from different levels of the bed showed no evidence of segregation or attrition during the 75-minute runs. There was no loss of powder by carry-over at a fluid velocity of 4 cm/sec; but 2.8 percent was lost at 8 cm/sec, and 5.6 percent lost at 12 cm/sec (Section 2).

The BET gas-adsorption method was used to measure the total surface area of saccharin for comparison with similar data obtained for talc during the previous quarter. For saccharin, the BET specific surface area is 1.53 m $^2/g \pm 7$ percent, which is significantly less than the value of 15.9 m $^2/g$ determined for Mistron Vapor talc. The increased surface area for talc is attributed to its porosity. The rugosity, defined as

9-1

COMPLETEN

BET Surface Area

Surface Area from MMD (Whitby)

is 2.2 for saccharin. Micrographs that have been used to obtain particleshape information are presented for tale, saccharin, egg albumin, powdered milk, Sm. powdered sugar, and cornstarch. Whithy size analyses made on saccharin and powdered sugar before and after their being dispersed by the swirl disperser for use in the aerosol chamber have shown that grinding does not occur in the disperser (Section 3).

A program was initiated to study the effects of atmospheric charge conditions on aerosol decay using the aerosol chamber. Ion concentration in the chamber is varied through introduction of positive ions by means of a corona-discharge ion generator. The injection of positive ions reduces the longevity of talc aerosols. For saccharin aerosols, the introduction of positive ions simultaneously with the introduction of the powder increases aerosol longevity, whereas ion injection after injection of the powder decreases longevity (Section 4).

Experiments were conducted to determine the effectiveness of powdered graphite in reducing side-wall friction of compacted powders sliding in cylinders. Data reported were obtained with three sizes of cylinders -- 6, 7.5, and 16.187 inches internal diameter. Graphite was applied dry and as a suspension in water, alcohol, and trichloroethylene. The latter showed a small improvement over the others. The force required to eject compacted tale and powdered sugar from a graphite-lubricated cylinder was found to be significantly below that for a plain aluminum cylinder. Although the results varied as the length-to-diameter ratio and the compactive pressure were changed, a reduction of 50 percent is representative of the decrease in ejection force observed during the tests. Further tests are planned. An area of particular interest is the effect of surface roughness on side-wall friction when graphite is used as a lubricant (Section 5).

Dissemination and deagglomeration studies with dry Sm using the blow-down wind tunnel have been conducted to extend the range of investigated air velocities down to Mach number 0.25. Tests run at various bulk densities have shown that the concentration of fine, deagglomerated aerosol is essential independent of bulk density in the range from 0.33 to 0.52 g/cm³. Consequently, 0.52 g/cm³ is the limiting bulk density for Sm for a speed of Mach number 0.3/ Wind-tunnel deagglomeration tests and viability tests on Sm stored in the compacted state have thus far demonstrated that storage at -2 C or -23 C for periods up to 30 days has no significant detrimental effect on either deagglomeration efficiency or viability (Section 6).

Fabrication of the second E-41 spray tank progressed significantly during the quarter. Minor design changes being incorporated in the E-41 tank include 1) improved scaling of components in the discharge tube region; 2) removal of the heating jacket from the nitrogen tank; 3) removal of the low-pressure switches from the gas supply system; and 4) the addition of filling holes in the pistons and end plates to facilitate loading loose powder. Plans were initiated to conduct flight tests at Eglin Air Force Base in which the E-41 will be flown on the F-100D and F-105 airplanes to demonstrate its airworthiness and compatibility (Section 7).

Personnel from General Mills, Inc. met with engineers at the Grumman Aircraft Company (Bethpage, Long Island) to discuss the problems of flying the E-41 spray tank on the AO-1 Mohawk airplane. Engineering and performance data were obtained. When the E-41 is flown on the Mohawk, it will be necessary to carry a spray tank (or a 150-gallon fuel tank) on each wing to maintain balanced loading. Maximum flight speed will be in the 200- to 240-knot range. Cruciform tails have been ordered for the E-41 spray tanks because this is the accepted design for the 150-gallon fuel tanks used on the Mohawk. Minor aircraft rewiring will be necessary to accommodate the E-41 (Section 8).

1 5 APR 2013

10. REFERENCES

ţ

- General Mills, Inc. Electronics Division. Report 2373. Dissemination of solid and liquid BW agents (U), by G. R. Whitnah. Contract DA-18-064-CML-2745. Tenth Quarterly Progress Report (September 4 December 4, 1962). Confidential.
- 2) ---. Report 2344. Dissemination of solid and liquid BW agents (U), by G. R. Whitnah. Contract DA-18-064-CML-2745. Ninth Quarterly Progress Report (June 4 September 4, 1962). Confidential.
- Report 2381. Fundamental studies of the dispersibility of powdered materials, by J. H. Nash et al. Contract DA-18-108-405-CML-824. Final Report (March 15, 1963).
- Zenz, F. A. and D. F. Othmer. Fluidisation and fluid-particle systems. N. Y., Reinhold, 1960.
- Matheson, G. L., W. A. Herbst and P. H. Holt. Characteristics of fluid-solid systems. Ind. Eng. Chem. 41: 1099-1104 (1949).
- 6) General Mills, Inc. Electronics Division. Report 2395. Dissemination of solid and liquid EW agents (U), by G. R. Whitnah. Contract DA-18-064-CML-2745. Eleventh Quarterly Progress Report (December 4 March 4, 1963). Confidential.
- 7) Fries, R. J. The determination of particle size by absorption methods.
 in American Society for Testing Materials. Spec. Tech. Publ. No. 234.
 Symposium on particle size measurement. Philadelphia, The Society,
 1959. pp. 259-78.
- 8) Whitby, K. T. Rapid general purpose centrifuge sedimentation method for measurement of size distribution of small particles. Heating, Piping Air Conditioning 27, 6: 139-45 (June 1955).
- 9) General Mills, Inc. Electronics Division. Report 2396, op. cit.
- 10) Flosdorf, E. W. and G. W. Webster. The determination of residual moisture in drybiological substances. J. Biol. Chem. 121: 353-59 (1937).
- 11) Ernsberger, F. M. Temperature coefficient of the McBain sorption balance. Rev. Sci. Instr. 24: 998-99 (1953).
- Wilson, E. D. and H. C. Ries. Principles of chemical engineering thermodynamics. N. Y., McGraw-Hill, 1956. p. 238.

APPENDIX A

LOAD AND STRESS ANALYSIS, E-41 SPRAY TANK

Page determined to be Unclassified Reviewed Chief, RDD, WHS IAW EO 13526, Section 3.5

1 5 APR 2013

REPORT N	D. 43.300	DATED 9-12-62
		, .
		·
:		
	FLETCHER & L	lation company
	-	
	LOADS & STRES	
	. Godin Pon	S Armer S
	· ·	
	· .	APPROVED
		APPACIES .
		Chief Engineer
	:	Nearl W. That. Project Engineer
		Render W. Hice Structures Engineer
		Reportation and an arrangement
		·
		·
MODEL	Custon	COPY NO.
REFERENCE	•	ISSUED

REFERENCE

PREPARED	R.W. Hill	9-12-62		HER AV	OITAI	N CO	MPANY	PAGE	75 100	1
CHECKED APPROVED			LOAI	solid					43.3	300
		**************************************					•	1.,,,,		
		72	BLE OF	CONTR	ete.					•
	Ite	9 .	•				Page			
	TNTRANT	TION					. 2			
		25			• •	• • •	. 4			
	NOMENCIA	TURE			• ;		5			
	Minimim	Margins of	SAFETY	· • •	• •	• • •	, 7			
		ADS SECTIO								
	Genez	al View of	Tank.		• •		. 8			
	Loadi	ng Assumpt	ions .		• •	• • •	. 9			
	Dania	Shear & Mo n Conditio	ment Da	ta	• •	• • •	10 12			
	React	ions to De	um Maioro Lo	ada .	• • •					
	Airlo	ad Breakdo	wn				22			
,	Criti	cal Shell	Shear &	Bendi	ing.		23			
	Criti	cal Design	Condit	ions.	• •	• • •	27			
		nalysis se								
	Nose	Section -	Shell		• •		28	•		
	Cente	r Section	- Shell		• •	• • •	29			
	AIT 3	ection - 8 419-501 Lu	Netl .	h-1-1	• •	• • •	31 32			
	-2017	9 Casting,	d (pla-	DO2 0 7	• • •	• • •	34			
	Main	frames				• • •	36			
	-4679	Fin					41			
	Fin A	ttachments	• • •	• • •	• • •	• • •	44			
	APPENDIX					• • •	A-1			
								•		
	•									
		,								
•						•				
	•									
-										

FAC Perm 1808

PREPARED	R.W.Hill	8-24-62	FLETCHER AVIATION COMPANY	PAGE	TE.A	2
Сикския			LOADS & STRESS ANALYSIS	Moore	Cus:	
APPROVED			SOLID FUEL TANK	REPOR		300

INTRODUCTION

The following report covers the basic loads and stress analysis of a special tank built for the Electronics Division of General Mills Inc. The design is par their specification GMS-29100-610, and is covered by Purchase Order MD-84384 dated 6-4-62.

The basic loads for the tank design are developed from the requirements of Section #3.5.6 of MIL-T-7378A, dated 20 October 1958 and from airload data furnished by General Mills in their letter to F.A.C. dated July 27, 1962. Load factors for the catapult takeoff and arrested landing conditions, as well as for the flight conditions, are taken from Fig. 1 of the above Mil spec., which gives load factors for wing-mounted stores. Since the load requirements of MIL-A-8591B are the same as MIL-T-7378A, they are also met.

The reactions on the tank attach points are calculated and summarized on pages <u>10</u> and <u>21</u>. Resultant shear and bending moment at critical stations along the tank are also calculated. See pages <u>23</u> to <u>26</u> inclusive. The foregoing data is then studied and a summary of design conditions critical for the various items of structure is presented on page <u>27</u>. The choice of static test conditions is based on this summary.

The sign convention for both the inertia loads and airloads and the reactions to the loads is as follows:

Z = Upward acting

Y = Acting to the left (looking forward)

X = Rearward acting

Positive moment vectors are in the same direction, using the left-hand rule.

In the case of the shear and bending moments in the tank shell, the sign of both the shear and bending moment agrees with the sign of the force on the end of the tank beyond the cut section.

PREPARED	R.W. Hill	BATE	FLETGY'S AVIATION COMPANY	PAGE TURE
CHECKED			LOADS & STRESS ANALYSIS	Moosa Custom
APPROVED			SOLID FUEL TANK	43.300 REPORT No.

Symbols and definitions used throughout this report are tabulated on page <u>f</u>. All loads, reactions and all stress analysis are presented in terms of ultimate loads unless specifically noted to the contrary.

The results of the stress analysis of the critical structural items in the tank are summarized in the Table of Minimum Margins of Safety, page 7, which includes all margins of safety less than 20%.

PREPARED R.W.H111	9-12-62	FLETCHER AVIATION COMPANY	PAGE	TRANS	4
CHECKER		LOADS & STRESS ANALYSIS SOLID FUEL TANK	Mooss	Cust	
APPROVED			Rerea		

REFERENCES

DRAWINGS

General Mills Drawing #SK 29100-612 "Prelim. Tank Assy. Drawing"

#21-150-48032 "Tank Assembly - G.M.I. Specs."
" 1342 "Nose Section Assem."

" " 3372 "Bulkhead - Fin Support"

" " 4232 "Beam - Fin"

" " 4235 "Angle - Fin Support, Upper"
" 4236 "Angle - Fin Support, Lower"

* * 4679 "Fin Assembly"

" " 20179 "Casting - Center Section Support"

" 20181 "Ring Segment"

Douglas Aircraft Drawing #2550568 - "Insert"

4544419-501 "Eye-bolt"

4552066 "Forging Blank"

REPORTS, MANUALS, ETC.

General Mills Specification WGMS 29100-610.

General Mills letter to F.A.C. dated 7-11-62.

General Mills letter to F.A.C. dated 7-27-62.

MIL-T-7378A - "External Fuel Tanks".

MIL-A-8591B - "Airborne Stores & Equipment".

MIL-HDBK-5 - "Strength of Metal Aircraft Elements".

QQ-8-766C - "Corrosion Resisting Steel Sheet".

F.A.C. Report #43.284 - "Loads & Stress Analysis, General Mills Tank".

N.A.C.A. T.N. #427 - "Thin-walled Cylinders in Torsion".

T.N. #479 - "Thin-walled Cylinders in Bending".

" T.N. #929 - "Circular Shell-Supported Frames".

Lockheed Aircraft Stress Memo Manual

BOOKS

Alcoa Structural Handbook, 1958 ed. F.R. Shanley - "Basic Structures" 1944 ed.

FAC Name FEOS

PREPARED	R.W. <u>Н111</u>	8-24-62	Fletcher Aviation Company	Page	70-2	9
CHECKED			LOADS & STRESS ANALYSIS	Medes	Cus	toni
4			SOLID FUEL TANK		43.	
APPROVED				REPOR	T No.	,
			•			1
	•	390	OMERCIATURE			ť
	SYMBOL		DRYINITION			;
	λ	Area (in	a ²)			
	Z	Modulus	of elasticity			
	r	. Allowabl	le stress (#Xin2)			
	£	Actual a	stress (#/in²)			
	I	, Moment o	of inertia (in4)			
	I _m	Мавя люя	ment of inertia (slug-ft2)			
	K	λ factor	; coefficient			
•	ŗ	A length	i (in.)			
!	1	A length				
•	М		(in-lbs.)			
	M.S.	Margin o	of safety			
	n	Load fac				
:	P ·	Load (1b				
	R 	Reacting	force; hook load; radius;			
	r	Moment a	rm; radius (in.)			
	s W	Shear lo	ad (lbs.); sway brace load (lbs	.)		
	w .	Weight (
	× ·	Kunning	load (lbs/in.)			
	x .	Dong Ltug	inal reference axis, positive a	ft.		
	Y .	Tank seg	tion at center of gravity.			
	-	to left.	reference axis, positive outb'd	•		
	¥		to center of gravity in Y direct	-4 4		
	2	Vertical	reference axis, positive upward	ction	•	- {
	_	Section :	modulus (in ³)	3.		į
	艺	Distance	to center of gravity in Z direc			1
	Δ	Increment	t of change, as AR, change in		•	
	9 .	An angle	(Deg.)	EOL C(•	
	ë `	Pitchina	angular acceleration (Rad./sec.	21		
	9 79 8	Yawing ar	ngular acceleration (Rad./sec.2)	-,		
	ઠ	Deflection	on (in.)	•		
	WHEN USE	D AS SUBSC	Cripts			
	A	Aft				1
	ъ	Bending	·			1
	br	Bearing				ı
	C	Compressi				j
	cr	Crippling	1			j
	F	Forward				1
	H L	Horizonta				Ţ
	L	Left side	1			1

IAG Pera 1608

Page determined to be Unclassified Reviewed Chief, RDD, WHS IAW EO 13526, Section 3.5 Uate:

REPARED R.W. H	11 10-24-62	ATION COMPANY PAGE 1. 4
PROVED	LOADS & STR	TUEL TANK 43.300
WHE	USED AS SUBSCRIPTS (contd)	• · · · · · · · · · · · · · · · · · · ·
M R \$ t u	Mass; moment Resultant; right side Shear Tension Ultimate Vertical	•
x y z y	X-axis)	vention, page 2
	, ,	
		•
·		•
•		
		•

FAC Perm FEDS

PREPARED	R.W. Hill	9-12-62	PLETCHER AVIATION COMPANY	PAGE	70-0	7
SHEEKED			LOADS & STRESS ANALYSIS	Moos	Cust	:022
APPROVED		·	solid yurl tank	Report	43.3	100

Page	Dwg No.	Material	Critical In.	X-8-
35 38 38 41 43 46	-20180 -20179 -20181 -4232 -4679 -3372	Type #304 Stainless Steel 356-T6 Casting 4130 Steel, h.t. 170,000 2024-T4 Plats AT-106 Polyurethene 6061-T6 Plate	Tension Bending Bending Bending Shear Bearing	.04 .00 .04 .00 .18

* Includes all margins of safety less than 20%

Page determined to be Unclassified Reviewed Chief, RDD, WHS IAW EO 13526, Section 3.5 Uate: 15 APR 2013

	HAME	SATE		-	
PHEPARED	R. W. HIII	8-24-62	FLETCHER AVIATION COMPANY	PAGE	7 4
CHECKED			Times		Cusan
APPROVED			Loads & Stress Analysis Salid Fuel Tank	Mones 4	Custom 3,300
C C C C C C C C C C C C C C C C C C C				REPOR	

LOADING ASSUMPTIONS

The basic loads for the tank design are developed from the requirements of Section 3.5.6 of MIL-T-7378A, dated 20 October 1958 and from airloads furnished by General Mills in their letter to F.A.C. dated July 27, 1962. These loads and the necessary reactions from the hooks and sway-brace pads are distributed into the structure of the tank, using the following assumptions:

- (1) Reactions from the sway brace pads are always normal to the tank surface, at an angle of 26° from the vertical. (Ref. sk. on page 14).
- (2) Side loading is resisted by a hook vertical load and the sway brace acting at 26° from the vertical.
- (3) Each eye-bolt should be copable of carrying 60% of the total drag load.
- (4) Rolling moments (M_c) will be carried by a couple between the hook and sway brace, each force in the couple acting at the same 26° from the vertical as noted above. Each couple may be equal to 100% of the total rolling moment.
- (5) Pitching moments are resisted by a couple between an eye-bolt and the far pair of sway braces.
- (6) Yawing moments are resisted by a couple formed by the lateral components of load of the forward and aft sway braces. The resulting vertical components are resisted by vertical loads on the adjacent eye-bolts.
- 7) The analysis will ignore pre-loads in the attach fittings due to tarquing the sway braces, because experience has shown that these pre-loads disappear before ultimate test loads are reached.
- (8) The effect of the various load components is linear (below the yield stress of all affected parts) and the reactions to them may therefore be superimposed on each other.

REPAR	- 1	2	42		/	z		411i - <u>C</u>	2		72.0		TÉ		À	/AT	101	• 6	ÓR	NO	M	NON				Lää	6	,)	•
PROV						-				│ "	· 4					•									_	79 41	A. N	<i>245</i>	3
		*	M.o.	6	* * * * * * * * * * * * * * * * * * *	- 43	- 763	- 343		- 760	657	154	240	C	13			- 34	1H1 -	- 3/9	- 536	- 743		~ .	30%		<u> </u>		
	•	2	\$ c	9		670	2910	7/50	14120	27770	19020	9/80	4230	1370	140		*	630	2580	0/77	15470	29410	20030	0788	200	/630	08/		
DATA	•	- 0	10 Mco	26		-3.760	-6.708	18.780	7.760	1.736	8.580	9.760	7522	5.440	1.054			-3.392	-6.273	- 8.690	-7.773	21112	8.490	9.773	2.115	5.84/	1.179		
- 1	0	V.	74	20				236.3	225.	7	581.7	7747	155.9	92.8	14.0			53.8	120.1	77/7	529.7	\$7159	7765	284.3	166.5	101.4	15.9		
MOMENT	~	V	<u>!</u>		Ļ	21.5	77.5	20.4	7511		57.5	90.5	113.5	136.5	137.5			13.5	42.5	65.5	36.5	111.5	539	578	111.5	1345	72.5		
AR &	· ·	d	MO	10 (2) 3.	0 /2 3 -	1	1	1	+ 2.004		- 180	4 4.004	4.276	404.4	1:036		1	- 3.372	188.7	- 12·7·	2027	2/01/2	- 1.303	86877	2.274	4.007	11.19	~	
IT SHEAR	'	X. X.		(S)	320 370	170,950	69,830	2770	47320	02.00	47230	116.7%	302.502	10000			2000	577,567	79 420	0177		+	<u>. </u>	34460	104430	359,270	- ∣		
ANK UNIT	*	4	è	୭	1815	1047	727	•	•	. 6	400	6481	4356	7921			SW71	2401	184	25	324		37.5	1,00	1000	27.52		יאני. יייי	1071
7	8	4	82.0-C)	-72.0	-49.0	-24.0		+20.0	- 3.0	+ 20.0	43.0	64.0	89.0			-74.0	- 51.0	- 28.0	- 5.0	0.8/+	47 -	0.0/+	41.0	24.0	87.0	70000	2, 20	•
CMPTY	~	3	2	paring	61.8	71.7	103.3	307.5	118.3	307.5	1/8.3	7.69	78.9	14.0	1/2	bui	53.8	64.3	101.3	308.3	121.8	308.3			85.5	15.9		1	•
•	-	7.5.	Vertical	Lada	0	£3,	25	2 3	20,	2	707	125	8 1:	12.	Kateral	Loading	99	ř	3	77	00/	77	90/		746	63/	# EWA		

Page determined to be Unclassified Reviewed Chief, RDD, WHS IAW EO 13526, Section 3.5 Uate:

1 5 APR 2013

PREPAR	50 /	2W	Hil	1/	Z- <u>-</u>	- C	2	-	_	LET	348	A	TAT	101	1 0	OR	OI	AT	ON			Pa	-	6	- A	7
GHBGKE APPROV				-			-	787			,	•						-				Me	•	A N	¥5 3.	4
	*	Medi	600	2 3	24/-	- 330	1221		670	424	* *	•			- 32	- 128	- 30/	145-	472 -	7.00	2			15/	T	-
DATA	2	য়ুচ	(B)	55,	3000	8720	2/380		25630	7520	/370	140			530	2530	7490	19900	39410	27040	(24/10	5040	1530	180	A	•
ENT D	6	P. S.	20	-3.223	740.2-	-10.031	-7.643	1 2	15.63	7.44	4.640	.40C			- 2.726	7/11/5	- 4.708	-11.203	- 6.173	9.708	11.203	8.173	5039	1.017		
MOMENT	De .	Ŋe	20	877	140.6	351.3	980.5		4/2.8	/67.2	22.8	14.0			23.8	1.02.1	348.8	735.5	7526	239.2	434.5	205.4	101.4	15.9	*	
1R &	_	7.5	= =;;	21.5	HH.S	200	113.5	27.7	905	1125	136.5	154.5			77.5	44.5			(///:2	533	\$ 5.5	11.5	72.5	1575		
UNIT SHEAR	3	10 Mes	* .~	- 3.237	12,809	768.	+3.282	H68 -	+3.282	2.953	3.784	. 700		2.00	-4.426	78678-	707 1	7 2 2 2 4		-1.495	+ 3.030	3.134	4.022	1101	79)	Col
	4	¥2,5	<u>ම</u> ල	320,370	189,200	3440	90240	3440	30240	ONS 'NCI	343,250	2	•	2941	172,450	163,620	10120	74230		10/20	0.77	114,520	530,470	740,000	(Vert. loading)	t. loadin
D TANK	*	4 3	ව	5184	1047	•	480	•	400	648/	738			22.472	2401	484	25	324	- 00	22.2	1000	1007	6752		_	
1040ED	7	4 8	9	-72.0	-24.0	- 3.0	+20.0	3.0	+ 20.0	73.0	4.0			-74.0	- 51.0	- 28.0	0.3	+ 18.0	50	+ /8.0	41.0	74.0	87.0			1, 360, 410
,	7 3	× /0	ling	879	210.7	4039	225.6	4039	225.6	75.7	14.0	1	ina	87.8	6.3	208.7	404.7	7327	1.HOH	229.1	104.0	15.5	15.9			l I
	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	Vertical	Loos	9 %	3	2	70/	E §	3 %	118	12	Latera	logding	>	36	31	-	8	77		/23	INC			V	

Page determined to be Unclassified Reviewed Chief, RDD, WHS IAW EO 13526, Section 3.5 Uate: 1 5 APR 2013

1 5 APR 2013

1		The second second	20200		•
, ,	: : : : : : : : : : : : : : : : : : :			DE	
11 ,					WILLIAM SENERA
; 	4				WIK -7 - 73 75 4 - FIG -7
	-1-1	441			Scal Mills diclosis, de
	Co	praite			
1 -		444			
I.	40	જનાંતર			
1 111	W	4 + 1			
1. 2	- X		4444		
1 3	- Z,,	- 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1	College	AUG	16.11/9/19.21 16 16 16 16 16 16 16 16 16 16 16 16 16
1 4	41	t. Desi	ga Par	reserves	
يد ا	172				1 1/50 //50 //50 -900
	79				排除 增长的投资的多数 控制的体验。2000年的人投资的人,从1000年的人会。1000年的
-	⊥ Ø _X				300 300 300
. 9	L	COSTE			190 900 1900 1900
10	77	Yave			经经济股份 经有限的 医克勒氏 医克勒氏 医克勒氏 医多种
[//	P	(Ya)	995 97	terk Co	
/2	À	ന്മ			
/3	LR	ØØ.			2/34 2/389 2/389
14	M	1/233			3504 3504
15	M	239			84820 -44820 44820 -44820
14		loads			
17				10.5	
_/8	Py				4035 -465 -3360
19	Px				720 25 345 345
20	My				370
2/_	M				
22	M		斯山型山		
23	Jota	loga	of ref	point A	180 - 2160 - 1440
24	3	@+@	1-1-1-1		1465 1587 -2883 -7352
1::::::::::::::::::::::::::::::::::::::		3 + 9			265 4/733 /1713 /2733
27	My	9 + 9	176	中人中国	1794 4059 -1754 3954
28		Ø + 0	5.80-	-3100	173,750 17230 230,660 -64350
29		3	75.810 +	-3/(8)	+6320 -/22/0 -/22/-
	- /-	1.11.			540 -180 -2160 -1440
Δ	Lan	200		! !	ter bigging think the control of the
		7.57	POINT	Ton.	1 0 13 72 14
	<u> </u>		Figure 1		
			· · · · · · · · · · · · · · · · · · ·	e to distribute di Est	

Page determined to be Unclassified Reviewed Chief, RDD, WHS IAW EO 13526, Section 3.5 Date: 1 5 APR 2013

= ERAL M	YLLS TANK			A 12
1-19 1 and				Rep. 43 300
ग्राटिक्तड, विश्वासन	Z-27-42)			
5			7 /	
			Lda Arr	Hg Art. Lag
				1729
			Red Laborate	27.9
			HIGH RUPES SIGN	4/5.0
0 79.00				ر د ا
4 9.75 9.75	国正次分型证决 阿肯曼理》中国			
3.00 -3.00	可可可以则则的			2 2 3
- 900 +900	计世界则组取图		900 780	PRINCIPLE DE PRINCIPLE DE CARRES DE LA CONTRACTOR DE LA C
2 =/05/2 -/05/2	-17520 -175	14 176	350	311 - 52 52
8 1/388 1/387	7628 222		228 261	
1 _ 3504 - 3504	1504 7350	2 2 2 2	504 -157	9 -15725
	S - 44820 448		440 7964	化基金换电池基件人的图片的 化丁基二二十五十分分类型
· · · · · · · · · · · · · · · · · · ·			1320 -443	0 44820
(4)	(2)			
7 3360				
345 345	30 30			ais/oan
10-78660				
40 -78440 -7049	0 -2/600 -2/6			
4 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	3000			
3 -7/52 -/05/2	-14955 -175	罗川山大洲山田牙	3504	- 62.62
3 ///33 ///33	2458 246	明問回門們問問門		
4 3954 -3009	3769 #300	開闢娛樂形理學	04 -1576	H/5728
CU - C4350 105 89		A 3410 43		4
9 -/22/0 -/22/4	F 4320 - 432			
d -1440 0		-/80		

Elet	- The state of the	No. (1984) Company and the state of the stat			
					Hamilton Hamilton
			推出自由自由		
979					
	Condition				
				- /3	14
			HELL Arn	da Cati T.	a Gt Ta E
المتحدة الرابعة المتحددة	Logding		Fu	IL Full	FUIL E
12.7	- W			1168	
2	The second second second			0 82.0	
3	$L_{\gamma\gamma} = L_{\gamma}$		EEE J.	0 415.0	4Z.0
4	Ult Desi	n Paramata			W/5.0
5					
- 6				10 1.50	-HISO
ح ــــــــــــــــــــــــــــــــــــ	1,5			5 225	- 2.25
9	O (Pitch	7	3.0	a /3.5a	/1.50
	ψ / Y		18.0	0 -18.00	-18.00
10				600	
Lint : Fri	Derra /	alidies			
			-/40	/- /757	-5256 1
	B B			2621	
_/3				1 /6768	
	My				
-15	M.			0 -27640	
16	Airlands	at 7.5 72 6		29880	729780
	P				
18	ρ		No	THE REAL PROPERTY AND ADDRESS OF THE PERSON NAMED IN COLUMN TWO IS NOT THE PERSON NAMED IN THE PERSO	
19	A		airlea	1	
1	My				
21	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1				
	at a first to the second or the second				
22_					
2.4	lotal load	at ref peli	7		
24			-Maic		-5256 3
25	The second second second		2628		
26	RILLE		7 * * * * * * * * * * * * * * * * * * *	1	
_27	My		2504		15768
28:			11.070	-99820_	-59100 -16
29_			60090	45150	-14610
			0	A	
	F.1.7				
	~JEEHOD P	oint 11.5 fu	d of rear	hook	
4-1-1-1-1					
_					

AND HEAT HEAT PROCESSES OF CAS, 30 PROSESSES PER MICH BOTH WAYE 350 EV 279 DIVERSES

Page determined to be Unclassified Reviewed Chief, RDD, WHS IAW EO 13526, Section 3.5 Date: If 5 APR 2013

1 5 APR 2013

					a	/2
				延期通過性	Res 413	.30a
15	17	18	/7	<i>2</i> 0		
Energy Full						
Ela A						
\$18.0 NC8.0						
20.3 47-0						
36.67 7514						
						卌
						
10000 10000						
69300 69300						
6930069300						
?(close						
		推問的問題				
30000 30000						
					4.433213 (din din din d	
-105,000 -105,000						
-105,000 -105,000						
			12:11:31:51:51			
	Testerile de la		userial substitution			

Page determined to be Unclassified Reviewed Chief, RDD, WHS IAW EO 13526, Section 3.5 Uate:

5 APR 2013

	MANE	BAPI	P STONE A	MATION CORPORAT			TANK	PERK
PREPARED	RWHIL	17-10-62	TITLE	TOTAL TOTAL	- Ch	PAGE		14
CHECKED				ic Loads		Moest	Cy.	ston
			-6-7-8	12 14 14 14			43.3	00
APPROVED	<u> </u>		<u> </u>			REPOR	T Ne.	}
	•					:	,	
	Des 1 mes.	والمرابعين	- 1010s	AT TALL	·	مير ،		!
	REAGII	ONS /	O LUAUS	AT TAN	<u> </u>		<i>E</i> /.	
	e e	•	10	15	•		:, -¹	
		15,) Sta	SA SRA		٠.		••
•	A	3. A 1.	-		₽ _A			•
1 :	•		4	1.1	- A	•	•	
- P	• . •	RX	***		R _{XA}			•
	R	~ "*\	75 s	Tara	□×A		,	
· :			18			/2.20		
	EWA	1. V	[]	W I	•			·
				10 - 5	XMK			
			P.	10-		For	26*	01.
, ·			20	5 -			4383	37 ·.
		. *				5 .		
•	. •			•	74	H= .	4877	/3
•	a.c.,	a	c	11.			ı	
1				options n				•
	equation	is tor	reactions	to appli	ed /	oad:	5.	
	Logal	· P	actions		· •.			
				3 - 6	2			0
	+ 12	Sim Sa	F 324 .	5RA = 125 F	9 = 7	. 278	12. 1	3
		43 m 43	= 7.5000	7				•
	+ P.	5 ₄ - 54	= .50 Px	= 1.1406	Py			
•	,	Kin Ki	49773	= 1.0252	ry			•
	+P.	Rx = Rx	A =6000	Px	•			
		•						•
	,	Rap 12	20Px = ,4	890 Px				
	•			D	715 6	2		
	}	-4 - 04	. 5787	910 Px = .2	.,,,	×		
*	-Px·	Rxy - R	A = -,600	PX				
		R	4880 Px					
		-^^ -S∠` + -S-	4880 Px	P.			•	
	1		, , , , , ,	- -				!
								i

1AC fero 1804-1

PREPARED	RWHILL	7-10-62	FLETCHER AVIATION CORPORATION	PAGE	raise.	/5
APPROVED			Basic Looms	MODES.	43.3	to e
	. ^	THE KEA	- Mx = 7/9048 Mx = 81879 Mx = 7/7/19 Mx 5:25 5:25 - 17/19 Mx = ,43837 Mx = .08350 Mx			·
	TMY K	EN = M	1/25 = .04000 My = .040 My = .02225 My	· · · · · · · · · · · · · · · · · · ·		
	Si	14 = 5 _{RA}	4000 My =702225 My	· •	•	
•	+M ₂ S ₁	$e_{\mu} = S_{L_A}$ $e_{\mu} = R_{E_A}$	$\frac{M_{*}}{20 \text{ H}.43837} = .11406 \text{ M}$ $= \frac{M_{2}}{20 \text{ H}.48773} = .10262 \text{ M}$			
<u>-</u>	-M2 5	= 5RA	= 7.11404 M2 = 7.10252 M2	•	•	

Adjustments for Final Reactions

Because of the manner of computing and superimposing the reactions to the various load components, it is possible for all four sway braces & both hooks to be loaded simultaneously. The reactions from the hooks and sway braces may be reduced in a proportion to maintain the static equilibrium. This will be done in two steps.

Step *1. Reduce the reactions in the hooks and sway braces simultaneously until one hook or one sway brace reaction becomes zero. If one reaction is already zero, this step is omitted. Because of the symmetry of the hooks and sway brace about the load reference axes, the following relationships

FAC form 7808-1

PREPARED	RW. Hill	7-10-62	RETCHER AVIATION CORPORATION	PARE	Printe 16
CHECKED			Basic Loads	Moore Tu	
APPROVED				43.	300

REACTIONS CONT.

11/

are true when the reactions from both hooks or from all four sway braces are changed simultaneously.

For hook BR = 1.0, the corresponding sway brace BR = 5000 = .5563

And conversely,

For a sway brace DR = 1.0, the correspond
Ing hook DR= = 2:.89879 = 1.7976 **

The above DR adjustments are shown as

the 1st Reduction on pages 20 and 21.

Step *2. After one sway brace reaction

reaches zero, the adjacent hook load may

still be reduced if the moments are kept

in balance.

ADJACENT FAR FAR
HOOK SWAY HOOK
BRACE

For $\Delta R_2 = 1.0$ on adjacent hook, Far sway brace $\Delta R = \frac{30}{5} \cdot \frac{5}{.84579} = 3.3378$ *

Far hook $\Delta R_2 = 6.0 - 1.0 = 5.0$ *

For $\Delta R = 1.0$ on a far sway brace, Adj. hook $\Delta R_2 = \frac{5}{30} \cdot .81879 \cdot .2 = .2496$ *

Far hook $\Delta R_2 = \frac{5}{30} \cdot .81879 - .2496 = 1.4480$ *

PAC Par 1108-1

PREPARED RWH	111 7-10-62	RETCHER	AVIATION CORPORATION	784A 7-56
CHECKED	1.0.00	TITLE		PAGE . 17
Arrayea		_3	tsic Loads	Hoose Euston
		:	The second second second second	REPORT No.
REACTIO	INS CON			
•				
ror	AR = 1.0	on tar	hook,	
A4	ty. nook b	1/2 = 5 25	2000	
Fa	or sway b	race AR	\$ 1.2000 =	.667¢ *
				• • • •
the	OPP DOLL	aajusta	ments are shown	45
1174	2 75946	מס מסצד	pages 20 and;	<u>21.</u>
:				
	• • • • • • • • • • • • • • • • • • • •		The second section is a second	
		• •		
* * * * * * * * * * * * * * * * * * *	• • • • • • • • • • • • • • • • • • • •		The second section is a second	ing s gadasa ng pangangan pangangan
•	•			• • • • •
•		•		
t to the second	•	*	e de la compansión de la La compansión de la compa	
			. · · · .	
	•		, , , , , , , , , , , , , , , , , , , ,	
	The second second			:
•			•	
				· •
	•			
	•			
		,		
•			•	
				\$

1AC Page 7908-1

Page determined to be Unclassified Reviewed Chief, RDD, WHS IAW EO 13526, Section 3.5 Date: § 5 APR 2013

	10 DOOR
	3 1 1
	16.49
	-2873
	1727
(S S S S S S S S S S	1764
73750 - 757	
	230.620
型 鱼 医 沙	
	-/22/0
	-2/60
72 - 12 - 12 - 12 - 12 - 12 - 12 - 12 -	15072
了四部岬回小河湖湖四周周周周周 周周3000000000000000000000000000000	
	-180
1670 - 2435	1670
11774 14000 11000 11774 14000	25462
7/1/2/9 + 04000 + 10260 (1) - 102029	
	100
(2) - 1000 (1) - 2000 (1) - 2015 (1) - 2015 (1)	
	15/0
7792() 4/4063 - 27/56 9672 15600	
15600 140 G	20655
7 14028 40010 6022 859	6291
	nus materials.
4330 /4926	/3383
5. 273.0 1 1 - 0 2 1 6	
2/22 2970 -1/1/02 (9) - 1/10/2 (9)	1804
* (Ref. AB 1/1 1/4 1/4 1/4 1/4 1/4 1/4 1/4 1/4 1/4	

Page determined to be Unclassified Reviewed Chief, RDD, WHS IAW EO 13526, Section 3.5 Uate: 1 5 APR 2013

		1																										-	•	• •		•			
	•	-1		·			1111		-	-	:31::	: (::	::1:		- 137	1,24.						112		, , , ,											
		1	· :	أرر	,					_	#	Ш			-	Ш		17.1	:::		:	Ш							H		ρ_{a}		: ::	18	::;
			-			٠,	1		2.5	<u>.</u> -	##							Щ	HH	- 17		#	1			\pm	山		拱		ez.		13	30	
	. 1	١		يد.رو	<u> </u>	40	3	7	1:::	<u> </u>	# 7				- -		Ш		訓			E	#			Ш				Ш		#		:::1	
	:	-	<u> </u>		-	<u> </u>														Щ	븨			Ш			Ш	則	#			11			ıII.
		1		-7	<u>.</u> !'				<u>د</u>				4				17			川	出				,					2	Ш	劃			
	:		: : : : . :		- ;		Till:				₩				₩	H					4							Щ		斮			i ;;;;		
	:	1		75	: 				نند <u>ا</u>	-	##	1111	###	!: !:	1111	<u> </u>	Щ		4		75.	75		Щ	2	4			2	,,,					
	- :	Ĩ			- 1:	* * * * }					<u> </u> -				- -	1.7	5	20						₩			Ш	Ш		Ħ.		_	7.	7	!!!
	::		₹.	75	اد	T			2.5	177					#	2	45	8	:11					四	2	9			Ž,	g		11.	دے	9	
		1		::1::				20	09		ilai	39 سا	وے داند		- :	##	::			<u>. 4</u>	108	7		1111 1111		#		Щ							
	3		1					* * * * * *			₩			-			9							411 F	5			-4		4			576		
	::	1		43	- .				87 		 	#**	4:!!	1		14	2	10	4	فإنانا	11/2	4				36	罪	体	71	ġφ		77	الم	2	
	===	<u> </u>	:				in	 .	1111			ļiĻ	1111			###	H	#	- -		- ; -				4		群	H	Ш						1
		-	-/:	22/	0		Ш,	,,,						1	ti		Ĺ			1,1				11111					: 	! ::::::		64	20	70	
			-2	44	0								24	2	TE		32.	s -		-6	32	.		-20	7.5	O		2	24	Í		111	[1]		
			<u>: Li.</u>		i E	淵				اننا	III					1		:17											P			!! !: ::	Þ		4
	_	===			出		Ш				圃	即	III			Ï											#	░						##	
	111		2/	60	۷.			85	32			3 <	Į.,			/,	2	2			밴						#	噐							4
		-	1	: : : :	1		Ė	Ë. :	::i			#		Hilli			د. ۱		1	د	ر ا	氚		5 !! !!	7'2. El⊞			5	72	4		//	48	3	-
			-/	20			Ш	م				.2	 52:	. 1.; ::::	:!!!	111	4																		4
	=) <u>=</u>	ii.							劃		H	iii.) 	Ī				73								1				Þ		4
-	_	-	2	72	<u>.</u>		-/	80	_ع			23	81.		1111	18	05	-		 	1	5			ø								+	+:-	-
-	-	11111 11111	714								-::	17:						1										K				7	46	4	-
•		**** *****	1.7	103	ا	-	21	120	10			13	74			19	46	2		3	<u>+</u>	X	F		87			•	49			-			+
1	-	: :::	••••••••••••••••••••••••••••••••••••••	111					##				!!!!		145		::::					E						4			il.	2.3	78		1
-	_!		-/	20				Þ			≝.	25	۲۷				٠.		H	-	/5	#				7.1	1		J		117				1
-				::::	===	#		#		111	鼼	-	***		II:	-:-						H.			T	II.	II.			Į.			1	1111	1
-	Ι.		23	72			/2	P.	ر تا:		-2	3,8	14	-1		18	05	•	_	2	5	3	ji.	27	27		1	עק				7.			
13	+				<u> </u>		1:::	: 1:::								444	::::		1		1333	朣				#									
::	I.		4	775			/7	94	8.		۲.	7.5	2			78.	3 2	111	::	54	29	Ш	Щ	101	18.8			3/	6			99	52	1	
Ϊ	Ï		-			: : :	177	-	12		#						4	::::	::::	:::::	::::						H		5		; <u>‡</u> ;				!
::	1		7	74.		<u> </u>	ا ک : : ا	7.3	۱, ندنت	-		58	3.	4	-: 4	10	79			22	11.			41	20			67	97			3	0	,	
:-	1	: ;;	 سدمے	بنند		! H :	1	-	1:-	+:	-	-					+		.									: .::				_		1	
	1		∍ 3 :1	88	i	:i:.	∷∷.	8	3		4.	24	7		3	03	2	:::		۷2	49		111	514	7/-			3.4	72	45		78.	 		
	-	· · ·	,,-	72			,,,	 	-	†	#	-	+			4	:::::		i	1:::	:::1							:::	::::	::::		i			
-]	- า	i (-			7.3	73		1	-2.	52		+		72	./			39	73			55	4			43	45	•		c).		
-;	1-								1				1.	+		+		=	+		1: i								111						
		- -				H			-			i i			+	-	•	- }																	
-!	!.		,			_					المنتاه	 9	<u>:1-:</u>			ن <u>نان:</u> حد	-11:	<u>:::::</u>	:41:	F	1111		1 ::		==	<u>=</u>	# ;	<u> 単</u>	11:1	4; :	11	<u>i</u>			
		7					_									•			-	- /				-1				-,				+ 2			

						2	2 <i>F</i>	111	1.	REA	CT	10N	΄ ς,	C	2N	TIN		<u> </u>	
	行作							32	وا علوم الم إستام إلى						-	Rep	9:	- 1	
	Za	re/s	st i	tank		e£	201	ot	/	2.		/3		14			15	-	
1 /		- !							-140	2//	/:	752		~~					ا <u>-</u>
3									24	28	20			5256 2628	7				
5	- PX								4		_15	128.		15761	3			-	
7 7										70_	77			59/00	2			· - · ·	<u>.</u>
110	-M									: - [45	150	.1 .	4616	<u>'</u>		· · · · · · · · · · · · · · · · · · ·		
	Rea	ctio	os i	to l	200				0			0		0			_ <u></u>	-	
R									1757	/3	19	011		6879	7.				:
Ry									Ö))		0			• • • • • • • • • • • • • • • • • • •		<u>.</u> .
Px,								-	210	2	-94	۷,		461	-				-
0.									2270	5	732	3	6	820				<u>.</u>	
Sza.			-						0		·1		*·	0					
Pxa								-	2102		946	/	-94	/61 .	 -		·	, ,	
Sep				To a second				A CHARLES	6804	1 -	348	<u> </u>	46	64	j	- •	 .		
500							•		0666		563	7	•	0					• ·
54						, .	•	· · · /	080	3	1513	7	 8\$	73	••			٠.	
SRA	. :					·• · .			951		698	9	72	42.		•		-	:

Page determined to be Unclassified Reviewed Chief, RDD, WHS IAW EO 13526, Section 3.5 Uate: 7 5 APR 2013

			AD.	1115	TMEN	T5 &	FINAL	REACT
· :								
				Cond.		1 2	3	4
	ر المستحاد .			zian_				<u> </u>
اور میماری	lim. Ve	rtical	Mark Control	≥ F	3465.	15292	15092	2/106
10	raction	S		4	11774	14000	25442	1-17/03
زرع:	18 4	19		ــ اعود	9472	15000	20655	14775
7			حاب	Ru	6012	859	6291	274
				44	4330	14924	-4:/3383	15888
· · · · · · · · · · · · · · · · · · ·			- V-S	44	2/22	2970	1804	4172
1 51			1	·	-3HC5	-1544	-3243.	-492
	Reduct		- A		-3445	-1544	-3243	- 472
	f. pg.	5			-1928	- 859	-1804	- 274
	++++		4.5	RF.	4		4.	1
			 45			4-4-1		
			عما	RA.	-1928	- 859	-1804	- 274
			براندا	J				
						13749	11849	21114
· · · · · ·			R		8309	-12456	22419	16611
	usted		ح ا		7744.	14741	18851	.1450L_
	raction	\$.] S	R _{ie}	4094	- 0	4487	. 0
	1-1-1-1		S		2402_	14065	11579	15414
			5		194	2///	0	3878
			A.R			- 432	-6722	-1148
2 nel		• 11 12 13 14	AR			-3/42	-1344	-5839
10	Reducti	on	- 405				-44.87	0.1
(KE)	1. pg. 16		\ <u>\</u> \ <u>\ \S</u>		.=	0	4487	0
			_ 45			-2/11_	1	-3878
			ح ما	ea -		-2///	_ 0	-3898.
			ا برسم است				 	<u>-</u>
			Ka				5/27	19946
		1		<u>- </u>	45	15	-/80	/20
			R.			-2435	1.	-2372
	ر درای در	-			8309	.927.4	_2/075	10772
	-INAL	المراجعة والمساوية	1 P3	•	-45	- 15	-/80.	-120
ISE	ACTION.	2	X		1670	-2435	1670	-2372
	بر برجاج ک	ļ	. 5.			14741	14364	14501
ال محمد م	عالما المسالم		- SA		4094	0	0	0
1			54,	4	2402	11954	11577	11116
بالمياد وقصا بطاله		<u> </u>	5,	<u>, </u>	- 194		=	. 0

Page determined to be Unclassified Reviewed Chief, RDD, WHS IAW EO 13526, Section 3.5 Date: 7 5 APR 2013

. 1								
-	- SEAC	TIONS	TO TA	NK! L	OAD5		P	20
	بىدۇر دارى		-				Rej	<i>,</i> , , , ,
	7.4	5	4	7	8	9	10	11
2		- 1						
ميد بر دري	2/206	18534	1./3542		- 5379	5724	5724	12.483
5	17/03		11374-		3528	11.6	16190	23985
7/	14775. 274	1 1.17	3752		5729			7952
zi	15288	1			22//		6.79.7	13809
4	4/72	1393	4249	1	6249		3972	
41	- 492	-2504			3973		**I.	1
43	- 472.		-1048	-/296	-3528			''
3-4	- 274	4 1 17	- 583	·	-3528	1.		+
!	4			-72/	-1763	-1-3184	-3184	
			, ,			1 -		
14	274	-/3.73	-583	- 721	-/9/2	- 2/0//	-31.84	
							-31.84	
eh!	2///4	16032	12514	/0837_	1871	0	<u> </u>	15403
17		21736		18170			10466	11:483_
5	14501	-14555	3169_	7///	3966			_9952
37	0	1780		:3358.		936	34/3	/3809
7		11990		23//	-4286			785/
			1938	. 0	2010			0
-2		2666	-= 581	3462.	0		0	-11483
147		- 533		- 692	:.			-2297
37	. :	_=:/78a·	····· 0 ·····	-23//	<u> </u>			=7666
(d) (-1780	0	-23/1				- 1666
1 .	-2000	0	=1935		· · · · · · · · · · · · · · · · · · ·			
1."	٠,٠/٥		. /738	. 0	<i>o</i>	0	0	. 0
7: 1	19946	12211	11022				فينسب تسابد	
3.	-/20	73366	- 161	73 73	187/	0	· • •	0
oj i	-2372	1805	-2321	ن المساد المراجع المراجع المساد	-/	0		9461
15	10772	_2/203	74/23	174179	- 4433	ZiO2	10466	9461
1 ,	-120	0	-254		راست می در	3H43	0	. 2/428 .
J	~ ~ 5 / ~ i	- /805	= 238/ ::	1805	-2452	4100		<u> </u>
-4	(450)	1.4775	3164	41800	3001			
			···· · · · · · · · · · · · · · · · · ·	. 1047	. 248 ·	934	2/ /5	11110
-	11116	7770	1/28	2311	4241	2007	700	a
	0	0			2010	2380	1141	783/
							: -:. 	

Page determined to be Unclassified Reviewed Chief, RDD, WHS IAW EO 13526, Section 3.5 Uate 5 APR 2013

	AOJU	STMEN	75 4	FINAL	REACTIO	V.5
11 11 11 11	152 425	北里	1-1-1			1
43.300	Cond.		/3	14	15 /	۷.
4	Reaction	7				
121 4 4 4	R	17573.	19011			
4	R.	22705	11 211			
1.	5	- 6.804			1861. 1979	
	5,,	10660	5437			
	Sz	10803		8573		
	5.5	951	6989_			
	ARZF	-17/0	6265			
1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	A.REAL	-17/0	-6265	1		
of the second states of	2 Sim	-751	-3455	1		
- And the state of	A SAF	1-1-4	1		TO THE	
有 中国 結構的	454		10.4.10			
	LAS	-951	-3485	- a-i		
		144.1%	4:4:4.4.		120-121	:
	R	15863	12746	1		• • • • • • • • • • • • • • • • • • • •
7.77	R ₂ A	20995	1058	6820	1 - 1 1 2 1 2 3 3	
1.77	1_5,_	5853_		4664		
	SRA	9709	2/52			
	<i>S.</i> ,	7.852	1 .	8573	والمستألة والمسترا	
	SA	- 17/6	3504	7262		- (
	10	1.58768	- 2/2	-/364	h	
	ARZA ASLE	-1754	-1058	- 4820		•
1 1 7 7 7 7		-5853	•	. 0	· · · · · · · · · · · · · · · · · · ·	
	A.SLA	-5853.	- 701	- 4552		•
	& Sea		- 706	-4553 -4553		-
	RA		- 706	-4553		•
The second second	P	7005	ر در این اور از است. ا	د. جامعرور		
	. /3	7095			• • • • • • • • • • • • • • • • • • • •	
	P.	-2/02	-9441	-444	e e e e e e e e e e e e e e e e e e e	* * * * * * * * * * * * * * * * * * *
	R-	19241	-9461 0		e e e e e e e e e e e e e e e e e e e	
	R	19241	0 -	,		
STIONS	/'1		-9461			
		-2/02	:			
	50 SR		2152	4664	:	
1.			2/52	4040	e e	
1	54 Sex.	7552	10946	HOHA		

Page determined to be Unclassified Reviewed Chief, RDD, WHS IAW EO 13526, Section 3.5 Date: 75 APR 2013

	PREPARED	1	**************************************	1.11	8	ATE	T	F	LETCI	1ER	AVIA	TION	60	REGRATION	 	Tv.=#	/200a
	Снеежер		KI/		XCZ		77	TLE						· · · · · · · · · · · · · · · · · · ·	 PAGE	7	12
	APPROVED						1								Mona	43.3 11 No.	00
j,		·	, y	<u>- </u>	,								T	•	 REPO	NO.	\dashv
1 000 C			Lateral Loads	2 3 44 5	787	4/73	314	* *	, K	08/ -	- 2/8	25/-	345	• •		\$ 15°	
			Latera	1678	nn	101	73	+	- 29	- 55	50.7	- 45	30	i			
		NN	Load	54a.	b	3/	45	77	00/	/23	146	149					
		AK-DO	•	þø.	0						•	-0	5811-	-1185			
		D BRE		` u	276	276	427	+ 73	- 92	- 226	- 274	- 163	+1950	2565			
		91RL06	ads	*	372	726	550	+ 139		- 253	- 321	- 215	5447+	3370		•	
		TANK AIRLOGD BREAK-DOWN	lertical Loads	~	- 361	101 -	- 521	- 127	76 +	740	3/3	209	-3795	-4635			
		7	Ver	~	124	737	77/	7 +	3	611 -	-/38	H8 -	-300	- 16.5			
	Ref. G.MI. letter dated 7-27-62			,	-310	- 605	bhh -	66 -	16+	731	285	787	-31/35	\$60H-			
	Ref. 6 dated		4007	374.	9	33	25	۲ -	707	125	84/	17.					•

TAC Press 1808-1

PREPARED:	RW	<u> Hill</u>		oate 14-62	TITLE	PLETCHER	AVIATIO	N CO	epoe.	ATION	1	Page		12
PPROVES												Mon	L (C.)	<u>(5/4)</u> 3.3
										•		•		1
4	٠	. 6		2.75		-44.82		0	0	0 0	2010.	778.	49200.	19370
BENDING MOMENT		7		-15.00	44.82	2		0	9	0 0	-12017-	SALZ	-60770	0000
SENDING.		٥		-15,00	78.44-	,		72.6	02222	4360	- 2377	432.	-56340	2000
			·	-9.00	- 44.82			3521	24075	0587/		7877	-2/60	CRADY
SHEAR &	· ~	202.0	7.207	1.50	44.82			-/220	717	0587/	- 594.	1512	-12360	0527
CRITICAL	Cond.	, ra	11 - 6d - 11	6.4		Ret. pg. —	((() + ()) 1/2 (() + ()) 1/2 (() + ())		Ket. pg. 22	oads	00 + 00 + 00 + 00 00 + 00 + 00 + 00			
,	Item		45	0,00	10 Mycs	๙๊ง๋ง ซึ่ง	1000 m		3.5		5. 06.	3	\$.5. \$.5. \$.60	+3- 20-
Peres 1808-1		- ~	m *	42	\ <u> </u>	£ 6 5	44	4 %	22	1	22	20	ن ۾ ج	Z.

Page determined to be Unclassified Reviewed Chief, RDD, WHS IAW EO 13526, Section 3.5 Uate: § 5 APR 2013

PREPARED A	W. Hill 8-14-6	2. RETCHER AVIATION CORPORATION	7. 4P4
CHECKES		TITLE .	MODEL 4-15 - 10 43,34 REPORT NO.
	E	2.25 2.25 -29.44 -29.44 1/323 -2044 -2044	9101 - 62130 - 62130
NZ.	6	2.25 84.64 -44.82 7304 -7406 -7406 -2792 0	79750. 31960. 85490
BENDING MOMENT	9	2.25 -44.82 -13.84 -13.84 -13.84 -13.84 -13.84 -13.84 -13.84 -13.84 -13.84 -13.84 -13.84 -13.84 -13.84 -13.84	11
SENDING CH.O+	4	4,75 -44.82 14946 14501 0 6413. -6357. 1564 47140 471,40 471,40 27130 27130	56.83 -36.500 103.080
	6	9.75 44.82 0 5127 14364 0 -7783 -6297 -1510 -4572 27130	20500- 103,080.
SHEAR &	319.2 7790 9.425 302	2.25 44.82 0 77744 4094 -10640 -1296 -39210 213 4.720	32750
CRITICAL	Cond. Ref. pg. 11	Ref. pg. 12 + 13 Ref. pg. 20 + 21 0 - 89079(0,0) .43837(0,-0) Ref. pg. 22 Ref. pg. 22 Ref. pg. 22	25 + 600 + 60 250 - 600 + 60 310 - 600 + 60
		200 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	1 25.2
K hama 1604-1	- 4w x M.	Lm e 6 5 4 4 2 6 4 5 5 6 6 6	ななが

Page determined to be Unclassified Reviewed Chief, RDD, WHS IAW EO 13526, Section 3.5 Uate:

1 5 APR 2013

\[\text{,}	EPARED	0	W.	1:11		476		_	 FLET	CHE	R AI	/LAT	ION	- co	RPC	RA	— ПОN	 !	T		7"-	٠١;	25
	HECKES		V V		-/-	7-6		TITLE			,								_	ARE	ا د ک د	· e+a	
4	PROVED																		,	900	43 14 He	,30	0
1				>														•	•			* 4 * 2	
	XZ_		. 21	434.5 2.410	11.203	-12.00	2.25	89.64	78.24	14241	0	10386	-4319	0	0	0	0	4114	-2839	5317	090 OH-	196, 150	•
	BENDING MOMENT	}	113			1,50	2.25	49.64	27.88	10746	2798	-12353	-3572	0	0	0	٥	-10477	- 2260	10933	0765	72840	,
	NDING	- 5.28	"			-4.50	2.25	47.68	72.27	1586	0	12834	-4318	a	٥	0	9	5186	-2838	10275	-96430-	OHH 801	•
	24	- (7			-15.00	2.25	44.82	פראלו	23//	0	15401.	-1013	0	0	-197	-4760	.1888	- 232.	8384	-206,720	207,520	
	SHEAR	IBNK	1	434.5	11.203	1.50	7.75	44.82	21075	61511	0	.87701	-5076	-3029	224,800	- 435	-37370	1789	-1415	1927	-226,760	243,460	
	CRITICAL	•	Cond	Ref. pa. 11			Ref. pg. 12+13	•		Ref. pg. 20+21		(© + (© + (© + (© + (© + (© + (© + (© +	13.31@ - @)		Ref. pg. 22	ı	oads	9 + 6 + 6 + 6 + 6 + 6 + 6 + 6 + 6 + 6 +			36 + + 26 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0	3	
			Item	22/	Mes Mes			10 M c.	8	N N	1	1000	127	2 2			~	2, c		5 8	15. 15.		-
	- 1404-1			· ~ r	1 %	ر دم	_	130	4	? :		2.3	13	* \	2 %	11	1	3 %	70	6	; ≈	2	-

Page determined to be Unclassified Reviewed Chief, RDD, WHS IAW EQ 13526, Section 3.5 Uate: 15 APR 2013

PREPARED	e w	Hill	8 - 14	-62		ETCHER	AVIAT	ION CO	APOR	ATION		PAGE	Trama	26
CHECKES	·			_	THE						·	Mone		ston
APPROVED	********** <u>****</u>	\top						-				REPO	m 1/3	.300
			·							,		1		
NG.	· •			-12.00	89.44			0	0	0 0	-3323.	3430	-87660.	20490
SHEAR & BENDING MOMENT	_			-15.00	78'nh			0	0 -	-5730	-36//-	318.	-93240.	93470
BENDING 110.5	ر -		-/(1.25	18.44-			1273	73020	-5730	-1614	1645	1560.	7800
\$ B	7		-7.00	4.75	7.0			1645	92300	-/7230	67.	1554	34300	13790
SHEAR	1	216.6 5490 8.071	243	9.75	0			-3001	075-	-19230	-3038.	3411	34 300	05,430
CRITICAL	Cond.	Ref. pg. 11		Ref. pg. 12		Ref. pg. —	@ - 89879(@+@) .43837(@ - @)	5-0	Nev: Pg. 11	Speak	89 + 89 + 60 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	मार्ग + व्हा		D
	Item	(2) (2)	n. Memer	10-3M3c	10 Mac.	, N N	0000 1	N 42	N.S.	3	386 141	\$ '\frac{1}{2}	2,2 000 000 000 000	
PAG Paras 7506-1	1	4 M 4	14	1 ~ 0	9-	\$ \$	22	\$ 5	22	15	\$ 5 2	12	22	

Page determined to be Unclassified Reviewed Chief, RDD, WHS IAW EO 13526, Section 3.5 Uate: \$\int_{0}^{4}\$ 5 APR 2013

PREPARED R.W.	Hill 9-6-62	FLETCHER AVIATION COMPANY	PAGE	TEMA	27
CHECKED !		LOADS & STRESS ANALYSIS SOLID FUEL TANK	Model.	43.3	

CRITICAL DESIGN CONDITIONS

The following tabulation of the critical structural elements in the tank shows which design conditions produce the greatest loads on these items.

ITEM	CRIT, COND.	CRITERIA	PAGE
Eye-bolt (attach hook)	11	Max. R & R X	
Central casting	(15), 5, 11	Bending	
Steel frames	(15), 4	Down ld., bending	
Fins & attachments	3	Max. fin load	
Tank shell	(15), 3, 11	Shear + moment,	
		& max. drag load	

Condition #15 is an ejection condition. Since the loads to be experienced in the actual ejection may not reach the values assumed in design, static tests will be conducted of the next most critical design conditions in order to demonstrate an adequate strength level in the above items of structure.

It appears that static testing to Conditions #3, 4, 5, and 11 will prove out all the structural items. It appears also that the high sway brace load in Condition #5 (producing high local bending in the central casting) would be duplicated in Condition #3 if these loads were all increased by 2.9%. This would eliminate Condition #5 as a test condition.

REQUIRED STATIC TEST CONDITIONS

Cond. #3 - Flight (with loads increased by 2.9%)

Cond. #4 - Flight

Cond. #11 - Arrested Landing

IAC form IAGE

PREPARED	RW. Hill	8-29-63	FLETCHER AVIATION CORPORATION		THES.	7
CHECKED		0 2/-96	TILE	PAGE	<u>'</u>	127
7				Mooel	13.3	
APPROVED		L		REPOR		
4			•			1
	•					:
•		_5	TRESS ANALYSIS			4
,		Out	er Shell Analysis			
Ν	ose Secti		7.5 0 - 52.1)			
4	Ref dra,	*21-150	-48032 Tank Assembly -1342 Nose Assembly	,	į	•
í	Critical	section	for combined shear	the bei	ndi.	79
	15 just to	orward	of sta. "52.1 joint. High	hest	100	15
	are produ	iced by	the 30000 ejection for	ce i	7	he
	Tank-em	pty co.	ndition.			
	M = 818		(Pg. <u>8</u>)			
	P = 300	200	Tank inertia la	145		
	17 = 1	7300 /h	-16s Cond #15, pg. 1	13		
	Mere = 3		36.27			
	5/n = 10		.)			
	5/10 Mes =	7.449	B 10			
	M/n = 4		7		•	
	M/10 Mes	= 222 in	-161]			
3	S=12 = 166.5	7 x 36.67	+ 7.449 , 49.30			
	- 6//3	+ 510	£ = 6629° =			
٨	1452 = 4290	0 x 34.67	7 + 222 4,30			
	= 157,	310 +	15380 = 172,090 in-16s			
2			ies find of Tis #52.1]
	.063 600	1-74	shell			
	QR. = 10.	48 (7	T.S. "50 , drg. "21-150-13	42)		
	A = .043	$3\pi_{\star}10.$	448x 2 = 4.136 in			
	$Z = \pi$	10.448	,063 = 21.60 in 3			
	$\left(\frac{R}{t}\right)^{1/2} = \left(-\frac{L}{t}\right)^{1/2}$	(0.44E)	25 = 165,8 " = 991.8"			1

FAC Para F806-1

FLETCHER AVIATION CORPORATION TITLE Moon Cueta 43.300 REPORT No. Nose Section cont. $=\frac{23.6}{10.448}$ = 2.26' (-1342 Hose Assem.) K = .90 (T.N. 427, Fig. 12) F = KsE .90 × 10 = 9070 % = 3 fs = 2 x 6629 (Prev. pg.; x2 for ratio of max. to avg. stress in thin sections.) - 3206 #/in2 $R_s = \frac{3206}{9070} = .3535$ K = .00185 (T.N. 479, Fig. 5) Fb = Kb = ,00/85 , 107 = 18500 Tin 2 Fey = 16000 7/in2 (Alcoa Structural Handb'k, table 4A, pg. 43, 6061-T4) (Prev. pg.; 1.5 is arbitrary factor for stress concentration for bayonet-type joint.) - 11990 Vin R_b = 11990 = .7494 Center Section (T.S 52.1-109.5) Ref. drg. #21-150-48032 Tank Assem. Critical section for combined shear & bending is at sta. *88.5-, in the tank-empty ejection condition. Load factor & pitching moment are same as shown on previous page. (Mose section analysis.)

FLETCHER AVIATION CORPORATION APPROVED Center Section cont. 5/0 = 288.3 5/6 M = 9,993 M/n = 9840 in-165 M/63M = 466 in-165 Szer.s- = 288.3 x 36.67 - 9.993 x 69.3 # 10.572 - 692 = 9880° T My 28.5- = 9840 x 36.67 - 466 x 69.3 = 360,830 - 32,290 = 328,540 in-lbs Section properties .063 6061-T6 shell O.R. = 10,500 A = 2 11 x 10, 468 x . 063 = 4.144 in Z = 11x 10.468 x, 063 = 21.69 in Since the section is nearly identical to that on pg. 28, the same allowable stresses will be used, but increased by 25% to allow for the stiffening effect of the foam filler. In addition, it may be assumed that the inner tank carries at least 10% of the actual shear and moment. (See also F.A.C report *43.284, "Loads & Stress Analysis, General Mills Tank.") = 2.9880 , 7 = 4290 Minu (Prev. pg. 4 above) F. = 1,25, 9070 = 11340 Tin Rs = 4290 = , 3783 = 328 540'2.9' - 13630 %n2

TAC Sum /101-1

FREPARED P	W HILL	8-29-62	FLETCHER	AVIATION CORPOR		PAGE 4	31
CHECKED			TITLE			Moest o	uston
APPROVED						43. Report N	34 3
· ·					•		·
Len	ter Se	ection,	cont.				1
F	= 1.25	. 16000		(Pg 29 + -	30.)		•
b		000 1/1	, 2	,	,		
R	136	30 =	.6815				
		. M	5. = .3	783 +>.61	-1	=	. 28
Aft	Section	on (Ti	109.5	- 159.5)		1	
Re	f. drq.	*21-150	-48032	, sht. 2.	Tank	Assa	M.
Cri	tical s	ection	for con	nbined she	ar & b	endi	20
15	just at	t. of 51	a. 109.5	joint. His	phest.	load.	-
arz	again	produ	ced by	Cond. "15,	Tank-	embi	'y
عر ج	etion.	Sectio	n prope	cties and	mate	rial	
are	ident	ical to	those	in the no)Se	tion	3
143	st torn	vard o	f sta. "s	72.1 joint.	(See ,	pg	28.)
	m = 17	۷,5 " _	}				
	IOM =			Pa in			
_	1/n = 5		1	Pg10_			
,,	No'M -	275 In	-165				
5 _{2/6}	4.5 = 174 = 59		47 - 8./e	04 , 64.30	(Pg.	29.)	
My	ors = 50	91 , 36.0	7 - 275	£ 69.30			l
	= 16	7, 630' 1	n-16s				1
Sin	ice bot	th the	shear a	nd momen	t at t	his	- 1
sta	tion a	re luss	than a	rt T.S. "52.	1 in th	he na	se
ana	t since	mate	rials &	section p	ropertie	5 97	-
idel	ndianl		•		*		
,	safe by	The At	t Sectio	a, in shee	ir + be	ndine	a,

FAG Paras F108-1

PREPARED 12:11 Hill 8-29-62	FLETCHER AVIATION CORPORATION	[ـــا	1 -
	TITLE	PAGE	5	32
CHECKER			13.3	
APPROVED		REPOR		
*4544419-501 Lus	g (Eye-bolt)			**
			i	
			•	
Heat treatme.	10 steel forging nt: 180,000 - 200,000 % I for top section in a			į
shear, Max. 1	Pas 20 4 21.) Ref. above.	in	_	
Shear area, As = .480 1	in (Orgs. "1544419 4, m factor) for shear, fo	4552	066	(. ـ

FAC form FEGS-1

RETCHE AMATION CORPORATION PART C 33		mand.	PATE			TENO.	, CE 16
######################################	PREPARE	Q 1. Hill	8-29-62		PAGE	6	33
##SHYNIA - 501 Lug, cont. f = 1.H2 + 23660 = 35000 1/10 = 2.2.4.06 F = 109,000 1/10 = (MIL-HOBK-5 table = 2.2.2.06) Shear - out of threads in = 21-150-20179 casting by 2½-12N-3A threads on = 255562 insert, over an effective length of 1.10 1.10 1.10 Shear area may be assumed conservatively, A = T(P.D), 2	1.3	1	771	rl S	Mone	L 6457	lem
#45.444/9 - 501 Lug, cont. fs = 1.42 - 13460 = 35000 Mn = 2.2.2.0b) Fsy = 109,000 Min						43.30	
f _s = 1.42 . 23660 = 35000 %/n ² F _{su} = 109,000 %/n ² (MIL-HOBK-5 table *2.2.2.0b) M.S. = High Shear-out of threads in *21-150-20179 casting by 27/2-12 N-3A threads on *2550562 insert, over an effective length of 1.10", Shear area may be assumed conservatively, A _s = T(P.D.), ½ = Ti, 2.82, ½, 1.10 = 6.50 in f _s = 23600 = 3640 %/n ² Casting material is 356-T6 F _{su} = 25000 %/n ² (MIL-HOBK-5 table *3.2.15.0b) M.S. = High *21-150-20179 Casting Material: 366-T6 alum. casting Critical bending stress occurs in Ejection Cond. 76. (Tank empty.) Running load from weight of inner tank 2, equipment W = 36.67, 409, (Pg. 25) = 120.0 %/n M _{max} = 12.126.9 + 9.2.16520 = 162,700 in-16s	:	<u> </u>	I		- ARPOI	RT NO.	
f _s = 1.42.23660 = 35000 1/10 ² F _{su} = 109,000 1/10 ² (MIL-HOBK-5 table 2.2.2.0b) M.S. = High Shear-out of threads in 21-150-20179 casting by 27/2-12 N-3A threads on 2550562 insert, over an effective length of 1.10°, Shear area may be assumed conservatively, A _s = T(P.D.), 1/2 = T, 2.82, 2, 1.10 = 6.50 in f _s = 23600 = 3640 1/10 ² Casting material is 356-T6 F _{su} = 25000 1/10 ² (MIL-HOBK-5 table 3.2.15.0b) M.S. = High *21-150-20179 Casting Material: 366-T6 alum. casting Critical bending stress accurs in Ejection Cond. 76. (Tank empty.) -9.2 Running load from weight of inner tank 2, equipment W = 36.67, 409, (Pg. 25) = 120.0 1/10 M _{max} = 12.1269 + 9.216520 = 162,700 in-165	#	ucuma -	l		•	•	
Fig = 109,000 "in" (MIL-HOBK-5 table "2.2.2.0b) M. 5. = High Shear-out of threads in "21-150-20179 casting by 2%-12N-3A threads on "2550568 insert, over an effective length of 1.10". Shear area may be assumed conservatively, As = T(P.D.), 2 = T, 2.82, 2, 1.10 4.50 in f = 23600 "in" (MIL-HOBK-5 table "3.2.15.0b) M. 5. = High *21-150-20179 Casting Material: 356-T6 alum. casting Critical bending stress occurs in Ejection Cond. "15. (Tank empty.) -9.2 Running local from weight of inner tank & equipment W = 36.67, 409 (Pg. 28) = 150.0 */in Mag = 12.130.0 + 9.2 16520 = 162,700 in-10s	-			*			
Shear-out of threads in "21-150-20179 casting by 2%-12N-3A threads on "2550568 insert, over an effective length of 1.10". Shear area may be assumed conservatively, As = T(P.D), 2L = T, 2.82, 2, 1.10 = 6.50 in f _s = 23660 = 3640 "In" Casting material is 356-T6 F _{su} = 25000 "In" (MIL-HOBK-5 table "3.2.15.0b) M5. = High *21-150-20179 Casting Material: 356-T6 alum. casting Critical bending stress occurs in Ejection Cond. "15. (Tank empty.) -9.2 Running load from weight of inner tank & equipment W = 36.67 + 409. (Pg. 25.) 1530 16870 16870 16870 16870 1530 16870 16870 16870 16870 16870 1530 16870 16870 16870 16870 16870 16870 1530 16870 16							
Shear-out of threads in "21-150-20179 casting by 2%-12N-3A threads on "2550568 insert, over an effective length of 1.10". Shear area may be assumed conservatively, As = T(P.D.), 2L = T, 2.82, 2, 1.10 = 6.50 in fs = 23660 = 3640 "/in" Casting material is 356-T6 Fsu = 25000 "/in" (MIL-HDBK-5 table "3.2.15.0b) M.S. = High *21-150-20179 Casting Material: 356-T6 alum. casting Critical bending stress occurs in Ejection Cond. "15. (Tank empty.) P9.2- Running load from weight of inner tank & equipment w = 36.67, 409 (Pa. 25) = 150.0 */in Mag = 9.2 176.09 + 9.2 16520 15530* 16850* 16850* = 162,700 in-165		F = 10	09,000 7	in (MIL-HOBK-5 table =2,2,2,6	. b).	1	
Shear-out of threads in "21-150-20179 casting by 2%-12N-3A threads on "2550568 insert, over an effective length of 1.10". Shear area may be assumed conservatively, As = T(P.D.), 2L = T, 2.82, 2, 1.10 = 6.50 in fs = 23660 = 3640 "/in" Casting material is 356-T6 Fsu = 25000 "/in" (MIL-HDBK-5 table "3.2.15.0b) M.S. = High *21-150-20179 Casting Material: 356-T6 alum. casting Critical bending stress occurs in Ejection Cond. "15. (Tank empty.) P9.2- Running load from weight of inner tank & equipment w = 36.67, 409 (Pa. 25) = 150.0 */in Mag = 9.2 176.09 + 9.2 16520 15530* 16850* 16850* = 162,700 in-165					M. 5.	= H,	44
casting by 27/2-12N-3A threads on \$2550568 insert, over an effective length of 1.10". Shear area may be assumed conservatively, As = T(P.D.), 2 = T, 2.82, 2, 1.10 = 6.50 in f = 23660 = 3640 %/n Casting material is 356-76 F_{50} = 25000 %/n (MIL-HDBK-5		Shear-ou	it of th	reads in #21-150-2	0179	1	,
insert, over an effective length of 1.10". Shear area may be assumed conservatively, As = T(P.D.), 2 l = Ti, 2.82, 2 1.10 = 6.50 in f _s = 23660 = 3640 "In" Casting material is 356-T6 F _{sv} = 25000 "In" (MIL-HOBK-5 table "3.2.15.0b) M5. = High *21-150-20179 Casting Material: 356-T6 alum. casting Critical bending stress occurs in Ejection Cond. "15. (Tank empty.) Running load from weight of inner tank & equipment w = 36.67, 409. (Pg. 25.) = 120.0 */in Mmg = 9.2 120.0 + 9.2 16520 = 162,700 in-16s	1					548	
Shear area may be assumed conservatively, $A_s = \pi(P.D)_{r} \frac{1}{2} L = \pi_{r} \frac{1}{2.82} \frac{1}{2} \frac{1}{2} 1/10$ = 6.50 in $f_s = \frac{23660}{6.50} = 3640$ %in Casting material is $356-76$ $F_{sv} = \frac{25000}{6.00}$ (MIL-HDBK-5 table #3.2.15.0b) M5. = High *21-150-20179 Casting Material: $356-76$ alum. casting Critical bending stress occurs in Ejection Cond. *15. (Tank empty.) P9.2 Running load from weight of inner tank & equipment W = $\frac{36.07}{60}$ $\frac{409}{60}$ (Pg. 28) = 130.0 *10.0 Mag = $\frac{92}{12.00}$ (Pg. 28) = 153.0 *10.0 *	1	insert.	over an	effective length of	F 1.10"		1
A _s = π(P.D.), 2 L = π, 2.82, 2, 1.10 = 6.50 in f _s = 2366 = 3640 lin ² Casting material is 356-T6 F _{sv} = 25000 lin ² (MIL-HOBK-5 table *3.2.15.0b) M5. = High *21-150-20179 Casting Material: 356-T6 alum, casting Critical bending stress occurs in Ejection Cond. *15. (Tank empty.) - 9.2 - Running load from weight of inner tank & equipment W = 36.67, 409 (Pg. 28) - 150.0 lin M _{max} = 92 130.0 + 9.2 16520 15330 16880 = 162,700 in-16s		Shear ar	ea may	be assumed conse	rvative	. / .	
f _s = 23660 = 3640 %/n ² Casting material is 356-T6 F _{sv} = 25000 %/n ² (MIL-HOBK-5 table *3.2.15.0b) M.5. = High *21-150-20179 Casting Material: 356-T6 alum. casting Critical bending stress occurs in Ejection Cond. *15. (Tank empty.) Pq.2 — Running load from weight of inner tank & equipment W = 36.67 + 409 (Pq. 28) *3530 16880 = 162,700 in-16s	1	A. = 7	-(P.D.) 2	l = 7 2.82 2		1/>	
f, = 2366 = 3640 %in 650 Casting material is 356-76 Four 25000 %in (MIL-HOBIK-5 table #3.2.15.0b) M5. = High #21-150-20179 Casting Material: 356-76 alum. casting Critical bending stress occurs in Ejection Cond. #15. (Tank empty.) P9.2 Running load from weight of inner tank & equipment W = 36.67 & 4091 (Pg. 25) 1530 10880 10880 16290 in-165		= 4.	Sp. in 3	3 4 //			
Casting material is $356-76$ $F_{SU} = 25000^{\circ} \% n^{\circ}$ (MIL-HOBK-5 table *3.2.15.0b) M.S. = High *21-150-20179 Casting Material: $356-76$ alum. casting Critical bending stress occurs in Ejection Cond. *15. (Tank empty.) -9.2 Running load from weight of inner tank & equipment W = 36.67×409 (Pg. 28) -120.0 % (Pg. 28)		_		un Tinz			
#21-150-20179 Casting Material: 356-TC alum. casting Critical bending stress occurs in Ejection Cond. "15. (Tank empty.) P9.2 Running load from weight of inner tank & equipment W = 36.67 × 409 (Pg. 25) 1100-11111111111111111111111111111111		6.5	0	,40 ///			
#21-150-20179 Casting Material: 356-TC alum. casting Critical bending stress occurs in Ejection Cond. "15. (Tank empty.) P9.2 Running load from weight of inner tank & equipment W = 36.67 × 409 (Pg. 25) 1100-11111111111111111111111111111111		Casting	materia	1 is 356-76			
#21-150-20179 Casting Material: 356-TC alum. casting Critical bending stress occurs in Ejection Cond. "15. (Tank empty.) P9.2 Running load from weight of inner tank & equipment W = 36.67 + 409 (Pg. 28) 1530 16880 = 162,700 in-16s							
#21-150-20179 Casting Material: 356-TC alum. casting Critical bending stress occurs in Ejection Cond. "15. (Tank empty.) Para Running load from weight of inner tank & equipment W = 36.67 + 409 (Pg. 25) 130.0 */in May = 9.2 130.0 + 9.2 16520 15530 16880 = 162,700 in-16s	İ	30		Table " 3.2.15.0 L			ı
#21-150-20179 Casting Material: 356-TC alum. casting Critical bending stress occurs in Ejection Cond. "15. (Tank empty.) Para Running load from weight of inner tank & equipment W = 36.67 + 409 (Pg. 25) 130.0 */in May = 9.2 130.0 + 9.2 16520 15530 16880 = 162,700 in-16s	}				M. 5. =	Hic	94
Material: 356-TC alum. casting Critical bending stress occurs in Ejection Cond. "15. (Tank empty.) -9.2 Running load from weight of inner tank & equipment W = 36.67 + 409 (Pg. 28) -130.0 */in Mmay = 9.2 130.0 + 9.2 16520 16880" = 162,700 in-16s						1 .	1
Material: 356-TC alum. casting Critical bending stress occurs in Ejection Cond. "15. (Tank empty.) Pg.2 Running load from weight of inner tank & equipment w = 36.67 x 409 (Pg. 28) 130.0 %/in May = 9.2 /30.0 + 9.2 x 16.50 15530 16880 = 162,700 in-16s	#,	1-150-20	79 600	tina			I
Critical bending stress occurs in Ejection Cond. "15. (Tank empty.) -9.2 Running load from weight of inner tank & equipment W = 36.67 + 409 (Pg. 25) -180.0 % Mmay = 9.2 180.0 + 9.2 16820 16880" = 162,700 in-16s		Material	, 201	7/ -/-			İ
Tond. "15. (Tank empty.) -9.2 Running load from weight of inner tank & equipment W = 3C.C7 + 409 (Pg. 25) -130.0 % Mmay = 9.2 130.0 + 9.2 16520 15530 16880 = 162,700 in-16s	1	Aridia-1	600 ()	alum, casting	، ، _		
Running load from weight of inner tank & equipment w = 36.67 & 409 (Pg. 28) = 120.0 % Mmay = 9.2 126.0 + 9.2 16220 2530 [4280] = 162,700 in-16s		Cirical #1=	OCHAINE	STress occurs in	Ejecti	01	
inner tank & equipment $W = 36.67 + 409 (Pg. 28)$ $= 120.0 \%$ $M_{may} = 9.2 / 120.0 + 9.2 / 16220$ $= 162,700 in-16s$		uona, 15		•			
$W = 32.27 \pm \frac{409}{83.2} $ $= 120.0 \% $ $M_{may} = \frac{9.2 \times 120.0}{2} \pm \frac{9.2 \times 1220}{10.20}$ $= 162,700 \text{ in-10s}$				Running load fro	M Wal	ght	ર્ગ
		30 000		W = 34,47 + 409	(Pa	28)	
$M_{\text{max}} = \frac{9.2^{2} / 30.0}{2} + 9.2 \times 16520$ $= 162,700 \text{ in-16s}$				= 130.0 1/in			}
2530 16880 = 162,700 in-16s		1111111145	90		9.2.165	30	1
702,700 771-703		+		-		-	
25.5		7530	16880	= 162,700 in-1	bs		ļ
,		25.	5				Ì
		1					_

Page determined to be Unclassified Reviewed Chief, RDD, WHS IAW EO 13526, Section 3.5 Date: Target 2000

1 5 APR 2013

Ì.

Page determined to be Unclassified Reviewed Chief, RDD, WHS IAW EO 13526, Section 3.5 Uate: 2, 2, 2012

1 5 APR 2013

RESPANS	EN Hill	MITE	PLETCHER AVIATION CORPORATION	1	TEMP	PEAN
i .	S. All	6-31-62	TITLE	PAGE	5	35
CHECKED				Mooe	Cu	Hon
PPROVED				REPOR	43.3	300
			,			
	20179 Ca	sting,	cont			į L
	Moment	t of i	nertia,			
	I = (5.6)	709 + 3	3.622 -14.065 , 2.0566), 2			
	= 19.	41. in	*			
	Tension	stress	in inner tank shell,			
	1078 typ.	e 304	stainless steel anneale	d.		
	f = 1	2,900 (10.500 - 2.057 - 8.33 cos 4	9 344	ر (ر	28
	= 7/	900 %	19.41 7 (Ref. prev. 2 pages)			10
	E. = 75	ממס	(QQ-5-766c, table II)		,	
	70 70					
	. سو		M.S. = <u>75000</u> - 71900	/ -	٥. ا	4
	lension	in tan	ige of casting (Item "7)	ı	
	f = 16:	2,900 .	2.193 (Ref. prev. 2 pag	jes)		
		400 1/in				
	FTU = 30	000 1/1	n (356-TG sand cas	ting		ı
			MIL-HOBK-5, table 3.	2.15.	06)	1
			M.5 = 30000		1	Į
			1.33 x 18400.	• =		-
(Compression	on sid	e of casting, with a		1	ı
,	moment	arm	of only 1.776" from C.G	i of	:	
	section,	is saf	e by comparison.			
	See po	- 36_	for analysis of casting	9 45	•	1
	part of	main	frames of tank suppo	rt	•	İ
•	structure	•	- / /-	_		
						1
						Į

1AC form 1408-1

PREPARED & W. H. II	9-4-62	FLETCHER AVIATION CORPORATION	PAGE	TEUR	36
Снеска		TITLE	Moog	· Ku	
APPROVED				13.30	

Main Frames

The forward and aft main frames are composite frames consisting of two semi-circular
steel straps connected across the top by
-20179 aluminum casting, which effectively
forms the upper segment of the frame, and
at the bottom by a jack screw. The forward
and aft frames are identical.

Bending moments in the ring are calculated from the coefficients in N.A.C.A. T.N *929, "Analysis of Circular Shell-Supported Frames," and conservatively use a "d" value of zero. Sections B-B and G-G are taken on the same side of the frame as the sway brace load, for maximum

IAC form FROS-1

PREPARED	EW. Hill	9-4-62	FLETCHER AVIATION CORPORATION	PAGE	i	27
CHECKED			TITLE			<u>:3/</u>
					<u>: 2,3</u>	don
PPROVED		L		REPOR		
	Anim En		,			:
/٧	Tain Frai	nes,	Cont			
	bending	momi	ent.			
	Section	A-A				
		1,00	.281 -	•		
	·			2		
		}.	1	.		
¥		£	250			
~ <u></u> -		SYM.				
٠		•	·			
		- 5./2				
	A = 1.50	× 5./2 -	28/ 4 2 /2			ſ
						ı
					,	
			- ,			
	I = 5.12	1.50	- 3.12 4.281 + .051 , 7.680		. 2	592
				, _		
			04 + .020260			
			_			- 1
	Moment	coeffi	cients for Rz (on &) a	77d	5	- 1
	(26 awa	yl, pe	r Fig. 11, T.N. "929			
	ror	R _i , (= 1238'			į
	For	S, c	cm = .041°			
	Critical	mas, cont. moment. A-A 3.00 5.12 5.12 5.12 5.12 6.50 5.12 7.084 1.50 1.	ه. ۵	<u>e</u>)		
	KZA = .	2/८82·		ا ا		
	54 =	9851				
	MA-A = (9.	00 + .69	7 1.238, 2/688 - ,041, 981	جزر)		
	= 44	100 in	-16s	- • /		
	f, = 461	00(1.50	00-,699)			
	200	1.196 70 %				! :
	a 308	io lin	-			ŧ.

7AC Parm 7808-1

	·			
PREPARED	R. W. Hill	7-5-62	FLETCHER AVIATION CORPORATION	PAGE 11 28
CHECKED			TITLE	MOSEL CUSTOIN
APPROVED				43.360
				REPORT NO.
M	ain Fran	125 6	ont,	
	F = 41	000 %	n' (L.A.C. Stress Memo	*(2)
			fig. */e.)	33,
			M.S. = 41000 1.33 x 30870	-1= .00
	Section 6	3- <i>A</i>	/·33 x 30870	
-	7665.077			
	100	.375 م	ia (2 holes) Material:	4130 steel
		1/1	375 h.t. 170,000	
				·
	A	4.00	-	
	Moment	coeffici	ents for	
	R. 04	1 away	, Cm =033 } T.N. "9	
	5 @ /s	s. away	, Cm = .//7'	29, fig. "11.
•	Critical I	bending	moment is from Cond	. #4
	$R_{2p} = 19$	946"	Pg. 20	
	5 = 14)	
		13,50 23/00 jr	19 50 (. 117 x 14501 7 . 033	19946)
			$= .0762 in^3$	I
7				
4	it san be	0554M	ed that the support fi	rom the
1	Filler wil	Teduc	nk and the structural	toam
	CONSEQUE	nt/v 6	e bending deflection (and
	f = .80	23/00	ending stresses) by at = 242,500 tin=	1895T 20p.
			in (L.A.C. Stress Mem	0 "53,
			fig. If.)	
			$M.S. = \frac{252000}{242,500} - 1$	= .04

146 fem 1108-1

Page determined to be Unclassified Reviewed Chief, RDD, WHS IAW EO 13526, Section 3.5 Uate: 15 APR 2013

PREPARED	EW. Hill	DATE 9-C-17	FLETCHER AVIATION CORPORATION		YEMA	201
	70.77	1-2-66	TITLE	PAGE	/?	.39
CHECKED	-			Modes		
APPROVED				REPOR	13.30 T Na	20
ř			•	_		K
	lain Fran	125, CC	ont.	: •		
,	Section a	٠. سره				
'		- 16. ,				
,					•	
į			.375 Same material a	75		
	1		375 Sect. B-B.			
			1		į	
<u>)</u>	3.10		z^{2}		;4 	
*. *A	Moment	coeffic	cients for		•	
3						
.v.	506	ر ساد الم	$C_{m} =09/$ $C_{m} =095.$ T.N. $\frac{9}{9}$	29 f	· *	11.
•	Critical.	ra Kanadin a	-m = -073	,	J	
	Ejection	7000 C	plus compression is t	rom		
	Pafarrin -	done,	hadd an a sa		,	
	is on the	LO 34	letch on pg. 33, the	max.	100	d
			Tame,			
	ReA = 1	C 880				
	Mc-e = (10,50	19)x .091 x 16880 = 15840	in-16	5	
	A = .37	5'x 3,16	= 1.185 in~			
			= .07406' in'	•		
		٠,				
J	It can be	2 9554	med again las for Sect.	8-8	(ı
7	that supp	port f	rom the heavy inner	tonk	•	
c	and the	structi	ural foam filler will r	educi	ي	l
7	the bendi	ng /00	eds on the section by	20%		1
	fe = 16	880	= 7/20 7/in 2			1
	7 x	1.185	Vint CALL - Harris a			
	' EY - /6	, 000 /	table #2.2.2.0h)			
	Re = 7/	20 =	in" (MIL-HOBK-5 table #2.2.2.0b) .0424			1
	Tb - 80x	128HO	= 171,100 //n=			Ì

PREPARED	RW. Hill	9-5-62	FLETCHER	AVIATION CORPO	RATION		TEMP
CHECKED			TITLE			PAGE	/3
						Moore	Cel
APPROVED						REPOR	43, T Na
11	nin E-				•		
7973	ain Fran	nes,	cont.				
	Foy = 25	52,000	Min 2	(Pg. <u>38</u>	_)		
	Rb = 1	71,100	= , 479	,			
	25	2,000	•				
			M.5. =	.0424 + .0		_	.
		•		.0424 + .0	790		1
	;						Ī
			•				
,	•						
•		•					
•							
	•						
				•			,
	·						
	•						
•							
				•			
	•						
•							

Page determined to be Unclassified Reviewed Chief, RDD, WHS IAW EO 13526, Section 3.5 Uate: 15 APR 2013

PREPARED & W. Hill	9-11-62	FLETCHER AVIATION CORPORATION	PAGE	Fide /C	142
CHECKED		TITLS	Moore	61.5	7-1-T-
APPROVED 1			Repor	43.3: F No.) O

-4679 Fin cont!

Foam Filler

The airload on the surface of the fin is transferred into the 2024-TH beam (spar) by shear in the rigid polyurethane foam filler, and by tension or compression of the .040 2024-T3 Alc. skins, Since the center of pressure at T.S. *160.0 is very close to 1/3 of the chord length, a triangular airload distribution may be assumed. Critical shear stress in the foam filler will be found along the front edge of the spar.

Typical section near tip of spar, parallel to M.A.c. Total fin area,

 $A = 204 \text{ in}^2 (Prev. pg.)$ $W_{Avg} = \frac{2000}{204} = 9.80^{-4}/\text{in}^2$

Wmax = 2 x 9.80 = 19.60 #/in=

Total shear at front edge of spar $S = \frac{10.5}{2}(17.6 + 7.5) = 142$

Total moment at front edge of spar,

M = 7.5.10.5 + 12.1 x 10.5 x = 353 in-165

The over-all taper of the fin forward from the spar will reduce the shear load on the core material by the component of load in the sheet material normal to the fin the

-				
PHEPARED	R V Hill	9-11-62	HETCHER AVIATION CORPORATION	PAGE 14 1/3
CHRCKED			TITLE	Model Continue
APPROVED	·			#3.34 a
į				
=	4679 Fin	cont	.	F*
	The tot	al fin	thickness varies from	. 387 To
	.120 in	10.0 "	distance. (Ref -4232	Beam
	and S	ect. C-a	c of -4479 Fin drg., a	bove)
	1an (2)	= (.38 . 2	17 - 120) = .01335 × 10.0	
	For 1	"wiath	of sheet	
	P _H =	858	== ±.2473 #	
	_			
	_		hear to be received to	
	_	•	hear to be carried in	core,
	Correct	ina f	2 x 33 = 76 or the shear area pres	
	9 47 3	weeb -	back of the front face	ented by
	fin spa	ar, th	e actual core shear s	tress
	f _{s.} =	76 605	.47° = 76 × .6828	'''
		.307 169 */in		ļ
		•	6 (6" foam, foamed to 1	*/- 3
	density). Con	servatively use strength	4 /ft
	tor 10;	1tt del	nsitu.	· ·
	Fsu =	200 1/11	n (Test by AT Product	s using
			MIL-STO-401 test	methods.)
			M.S. = 200 -1	=
			, -,	1 .
	Tension	stress	in .040 2024-T3 Alc 5	heer
	tr = (2	473 +7	> 33) COS 47° = 4'1700	inz
	F. = 6	1000	1/1- (MIL-HOEK-5 table #3.2.3.0 d)	
	, -x			/ = 1,32
		عوالموارك المالية	42700	

TAC form \$200.7

Page determined to be Unclassified Reviewed Chief, RDD, WHS IAW EO 13526, Section 3.5 Uate: \$ 5 APR 2013

PREDARED 2 N Hill	9-11-62	PLETCHER AVIATION CORPORATION	PAGE /	Elect Gray
CHECKEO		TITLE	MooriL (Custon 3.300
APPROVED			REPORT	

Fin Attachments

The two fins are mounted on -3372 bulkhead (T.S. *159.5) by Sandwiching the inbd. ends of their spars between two angles which are bolted to this bulkhead. The fins are also stabilized against twisting by clipping the inbd. end of the leading edge to the adjacent tail cone. As for the fin itself, the attachments

As for the fin itself, the attachments will also be critical under the airloads of Cond. *3 - Flight.

Fin leads
$$P = \frac{1.5 \cdot 2530}{1.5 \cdot 2530} \pm \frac{1.5 \cdot 12 \cdot 120}{2 \cdot 10.50} \quad (Pq. 41.)$$

$$= \frac{1897.5}{1} \pm \frac{102.5}{1}$$

$$P_{g} = \frac{1795.7}{1}$$

Pai from Filail

RAME	DATE	FLETCHER AVIATION CORPORATION	TL OF PER
PREPARED & M. HILL	9-11-62	TITLE	PAGE / 1 45
CHECKED			MODEL CHE SE
APPROVED			43.300 REPORT No.
Fin Attack	cont.	-	
The in	6d. &	outbd. reactions on to	he spar
(Rz & R) crea	te the loads on the upp	ber and
		ingles. Assume these rea	
are .10"	away t	from edge of angle and	d end
		prev. pg.) p	, R ₊
For P	= 2000	2 <u>6.27</u> 3.9	7
Ro	= (0,24,	2000 = 5159 " R.	•
		-2000 = 3159 *	
	= 179.5		
R.	= 10.24	± 1795 = 4630° #	
R_{r}	= 4630	-1795 = 2835 #	
Attachm	ents f	for lower angle are cr	itical.
Load on	bolt	patturn	
		630 = 9789 *	
		7-4630) = 2238 in-lbs	
		artia of bolt pattern.	
		1.05) = 24.78	
Max. bol		·	
max =	7787 +	2238 <u>3.36</u> 24.78	
	2447 +		
1007	2750 #		
Load is	taken	by an AMS both bearing	na in
.120 6061			ز
Bult allow			
Ps = 57	50 .	(MIL-HOBK-S, table "8.	1.1.1.10.)

FAC form 7:03-1

Ī

U		PREPARED & N. Hill 9-11-62 PLETCHER AVIATION CORPORATION	PAGE	PEDIP.	1 20
		CHEGGED		CUS	
n		APPROVED	REPOR	43	
				110.	4
		Fin Attach, cont.			
11		Allowable bearing load by ANS in	120		
li		6061-TG plate,			
		Por = 1.5 x 58000 x . 120 x 5 (MIL-HOB) = 3262 # table #8.1.	K-5	- ~ 3	
1		= 3262 * Table *8.1.	1.1.7	ナナノ	ı
1	ļ	M.S. = 3262'	/	= . 0). <u>3</u> '
,		1.15 275	70.		
	j				
	ļ	·	•		٠
į					
•	· [
	. }	•			
•					
1					
	1				į
•					,
	ļ				i
•	:				} :
	:				1
	۰. ا.				4
	•	·			
	į.				1
	ļ				!
	: .i				ş.
	le L				
	;				

Page determined to be Unclassified Reviewed Chief, RDD, WHS IAW EQ 13526, Section 3.5 Uate: 1 5 APR 2013

PHEPARED R W. Hill	10-16-6	FLETCHER AVIATION COMPANY	PAGE TEI,P.	Am.
Снескир		APPENDIX "A"	Moort Cust	on
APPROVED			43 Report No.	

INTRODUCTION

On October 4, 1962, a revised set of airloads was received from General Mills to use in conjunction with the inertia loads derived from MIL-T-7378A. This meant a revision of Flight Conditions #4, 5, 6 and 7 basic loads, as shown on the following pages. New attach point reactions are calculated, and resultant shears and moments are found at four stations along the tank shell, as before.

From the above data it was found that Condition #4 is no longer a critical condition requiring static testing. It will be replaced by Condition #5 and 7. (See discussion on page A-10) This means a total of four design conditions will require static tests.

Starting on page A-11, a review of the effects of the new loads on the previous stress analysis is made. It is shown that all structural items affected by the new loads still have positive margins of safety.

Freguesd	PNHI	10-8-62 T	FLETCHER	AVIATION	CORP.	Page /
Checked			•			Model (E)
Approved	1 1 1 1 1 1 1 1 1	10000	<u> Hppel</u>	ndix "A		Raport No.
						7 3
	RE	VISED	DESIGN	CONDIT	12NS	
		VISCALO	M. dirloa	ds dot	ed 9-27-	621)
	Conside					-
			Flight	Flaht	E	
	Loggin		Fall	FUII	Flight	- 1 (1 (1 (1 (1 (1 (1 (1 (1 (1 (1 (1 (1 (
LW	+ + + + + +		1168	1168	11.62	Ful
2 X			72.0	82.0	82.0	· · · · · · · · · · · · · · · · · · ·
3-1-144	= In Cshi					
4 <u>Ull</u>		grameter.				
5 172	The second second		-7.00	-9.00	-15.00	-15.0
7 0x			9.75	19.75	2.25	. ,
8 8	(Pitch)		3,00	- 3,00	1.00	= 3, 6
	(Yow)		-9.00	9,00	7.00	7.0
	rtia Loads	ot C.G.		0	, 0	
11 P2	(JS)		-105/2	-10512	-17520	
12. Py			//387		2628	
13 Px	<i>O</i> O		3504		3504	
14 My			-114820	44820	-44820	448
	1239 2015 of T	7		0	o	·, o
17 Pz	POITS OF T	76.5				
18 8		i i - 	1.7.208E	-2250	/350	- 225
19 Px	-		345 510	345	30.	3
20 May 1				121,260		
21 Ma				-78480		
22 . N/2.				-4360	2,000	
	Lour ot	Ref. Pt.				
24 Pm			-34.27	•	- 14170	-1477
	(A)+(B) (B)+(A)			11733	77 . * *	145
	@+ @-5.81	7 0 - 10	4014	-2904	37:04	-290
the Man	D+ 10+5.31		1/2430	233, 850.	15610	- 274,5
7 Mai		TIS VE	-/2-1.0			- 4.5
	and the second s		560,	-4860		

Ĭ

Page determined to be Unclassified Reviewed Chief, RDD, WHS IAW EO 13526, Section 3.5 Uate: 15 APR 2013

Francisco	E & Hill	10-8-62	TLETCHE!	AVIATIO	N CORP.	Page 2
Checked				ndix "A		Madel (LL 57
	PRELIM.	REACTIO	NS 70	PEVISE	LOAL	25
			4	5		
200	to at Ta	nk Pot	P			
2	- P.		- 1427	-/2762	-/6/70	-/97
3 4	+ P3 + PX		7.733		2658	265
5	- Px Re	E prev. 1	4014	-2904	3984	-290
7			42430	233,850	95610	2 274,5
8	+Ma					
	Mx		-12210	-/22/0	-6320	-6320
				-4860	Ö	-/8
Reg	ctions t	o Logils				
			19514	20493	13402	- /328
Ryp			- 30	406	P	-15
Rx	5am	4	-2408	1.742	-2390	
RZA	Operati	One	وسوغت والمائل جادي أرماه فأأ			
1			77753	3/2:4	15282	25639
RYA	45 . 0	?	-30	-406	٥	-15
RXA	P9. 1	7	-2408	1742	-2390	1742
54 _F					•	, , , ,
:				20767	5880	10 450
SRF	A Hostoff in the		1013	4917	2/27	6932
J.			14472	13533		ત્ર • •
S,	-					and the same
•			×33/1	23/3	1702	75.

Page determined to be Unclassified Reviewed Chief, RDD, WHS IAW EO 13526, Section 3.5 Uate: 1 5 APR 2013

Propured	G W. Hill	10-3-62	FL STCHER	AVIATION	CORP.	Pags 3
Cheeked						Media Ca
Approved			Appen	ndix "A		Ropon No.
						1.1
	ADJUSI	MEMT	5 2 61	NAL R	EACTI	ONS
			4	5	6	
			E 19574	2049.3		
Per	lina Vertic	R			11 11 11 11 11 11 11 11 11 11 11 11 11	
	Piretions	ar da Marta da		of setting process		
	Pg A-3)	S.		6917	4/13	111.
			2561	23/8	1802	• 1 –
		(AR		-4167	-3239	
4.0		DR.	A -18.20	-H167	-3237	1 :
	Reduction.	1205		-2318	-/802	1
Cret	Pg. 15)	454				1
		_\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \			A.	
		\\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\		- 23/8	-1802	
		R	*T (/6326	10163	11.
Ad	justed	+ 3.	A 14706	27097 18449_	12043	
	Reactions	5,	2	4599	325	- 9 - 6
		S ₂	13459	11065	23//	. 2
		S. S.	/538	۵		. !
		AKZ	and - HG133	-6889	-487.	-92
2 100 /5	eduction	ARZ.		-/3.78	- 47	-/8
	. pq. /6)	451, 452,		-4577 -4579	= 325	-61
		454	- 1537	-7579	- 375	61
;		LASR	-1538	0	<i>o</i> .	
	The second secon			9437	9676	. 20
		Ryp	-30	-406	٠ ت	
e series de la composition della	- /2x	-2408	1742	-2340	100	
/=	513.14 I	KZ,	15/29	-5719	11946	. 224
125	571/36/5	A Ry	30.)	. /
			-2408 14706		- 2390 -	
•		5,	0		2753 2	37
•		_ S.,	//921	11005		<i>ن</i> 122ء
		5,		2		£

Page determined to be Unclassified Reviewed Chief, RDD, WHS IAW EO 13526, Section 3.5 Uate: [1 5 APR 2013

7AC Fum /808-1

REPARE	10	MANA M/	411	10	9-1	12			CHE	R AV	TATIO	ON (ORPORAT
PROVED	+			+	 .		TITL			مو	en:	dix	. u _A /
	-			<u> </u>				-					
		٠	•										
•			-	_	······································								
	Ä	Lateral 10000	das										1
	BOK	-	3	-		·							
	14-7	10	, ,		Same	98	pg. 22	_			···	-	30
	SRE	ate	_	+-					· • • • • • • • • • • • • • • • • • • •				
	2	. ~	7 + 5		Same	95	Pg. 22	. -				-	345
	DAG				·		٩_	- 				·	<u></u>
	REVISED AIRLOAD BREAK-DOWIN		7.5.	0	2	3 13	1	00/	/23	140	169	•	
	9			136	744	. 4		. ba	73	143	۵	<u>۔۔۔</u> رہا	5
	35	h		-		1	1	+	12	14	00	-2115	- 22.55
	735	Loads	J	76	715	427	43	42	222	276	143	750	
	Y			~		3	+	1	7	4	- 10	+ 7	1365
		lical	4	8	HH	7	۲.	من م	3	უ		 V3	6
t1er 1962.		Vert		- 128	1 2	- 172	<u> </u>	+	17	1.7	VS	-211	-2255
٠,٠٠			#	372			39	 ™	بي.		ls.		٠ ر.
dated 1 Oct, Mez.				m	~	7	+ 139	1	- 253	3	- 215	FIN +1170	70.
24.00 E			7.5	0/	33					3/1	171	 ≥(a	•
1.7%			• •	•	•••	~ J	, 7	2	`	1	`	દ્ર	

Page determined to be Unclassified Reviewed Chief, RDD, WHS IAW EO 13526, Section 3.5 Uate: 15 APR 2013

H3 300 REPORT No.

Them Cont SHEAR & BENDING MOMENT		CHECKED	.2	'.		<u>'9-4</u>	7-6	7 777		E CHER	pen	·	- 	4 "		Mon	er (
CRITICAL SHEAR & BENDING TANK STA \$1.2 Lond 4 5 6 6 201,0 4,446 7,207 199 -7,00 -7,00 -15,00 9,75 4,75 4,75 4,75 4,75 9,75 1,25 -4,22 476 8ef. pg. 12 -4,60 -4,00 -4,															•		
CRITICAL SHEAR & BENDING TANK STA \$1.2 Lond 4 \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$	THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF	MOMENT	ı	7			-15.00	2.25	٥				-427	4300	-3129.	3192	
CRITICAL SHEAR & TANK STA TANK STA TOO, 0 Ref. pg. 11 Ref. pg. 12 9.8879(@+@) 9.88779(@+@) 1258 1258 1258 1258 1258 1258 1258 1258 1258 1258 1258 1258 1258 1258 1258 127 127 12850 12850 12817 12817 12817 12817 12817 12817 12817		NDING	2.7.5	2			-15.00		0			1		178		2460	
Ref. pg. 11 Ref. pg. 11 Ref. pg. 12 Ref. pg Ref. pg Ref. pg Ref. pg Ref. pg. A-5 Ref. pg. A-5 Ref. pg. A-5 Ref. pg. A-5 Ref. pg. A-5 Ref. pg. A-5		24	i	8	,		- 9.00	4.75	0			133	7886-	211	-1312.	3300	-43780.
Ref. Pg. 11 Ref. Pg. 12 Ref. Pg. 12 Ref. Pg. 12 Ref. Pg. 12 Ref. Pg. 12 Ref. Pg. 12 Ref. Pg. 14 Set. Pg. 14 Set. Pg. 14 Set. Pg. 14 Set. Pg. 15 Set. Pg. 16 Set. Pg. 16 Set. Pg. 16 Set. Pg. 17 Set. Pg. 16 Set. Pg. 17 Set. Pg. 16 Set. Pg. 17 Set. Pg. 16 Set. Pg. 17 Set. P		SHEAR		_ !	4646	199	-4.00	4.75	0			1356	24075	11850	1000 0000	7827	-21600.
EN NEW E CESTO SAN OF CHANGE SAN STAN STAN STAN STAN STAN STAN STAN				Cond	Ref. pg. 11			Ret. 19.		Ref. pg	1 20	0 0	Ref. pg. A-S	,	+ + + + + + + + + + + + + + + + + + +		·
			7	5/2	12 /2 /2 /2 /2 /2 /2 /2 /2 /2 /2 /2 /2 /2	" You Mee	0.0	10 Myce		^ど がか	0.00 0.00	2,5	37.76	X 2 472	<u> </u>	N,	

Page determined to be Unclassified Reviewed Chief, RDD, WHS IAW EO 13526, Section 3.5 Date: 7 5 APR 2013

PREPARED	2	44.88 1. /	1211	19-		2		FLE CH	ER A	VIATIO	 ON C	OKP	ORATI	10:4	PAG	1820	. .
CHECKED APPROVED							TITLE		Aρ	pen	di	·	<u>"A '</u>		Mod	H3.	
							·							•	REF	PORT No.	
& BENDING MOMENT	ł	7		į.	- (5.00	7.7	78.44	2679		- 463	2011	12812	223	-4620.	.687-	-87500.	
NDING	+ 07.7	7			-15,00	2.75	-44.82	2676	20	6303	12.14	34290	223	2307	- Yo4 -		97170
1 4	W 177	5			-1.00	4.75	44.82	9437	0	-3011	509	71851	412	-4452.	-2047.	103,0,801	110,850
SHEAR		. !	319.2	302	-4.00	9.16	-44,81	17233	. 0	3104	1564	47140	21130	2283.	7	-36,500.	104,3501
CRITICAL	_	Lond	Ref. pg. 11			Ref. pg. 12 + 13		Ref. pg. A.y.		(@ - 87e75(@+@) .43e27(@ - @)		Ref. pg. A-S		\$\$\\\ \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	C + @ +	\$ \(\text{(3.0)} + \text{(3.0)} \\ \text{(4.0)} + \text{(5.0)} \\ \text{(4.0)} + \text{(6.0)} + \text{(6.0)} \\ \text{(4.0)} + \text{(6.0)} + \text{(6.0)} \\ \text{(6.0)} + \text{(6.0)} \\ \text{(6.0)} + \text{(6.0)} \\ \text{(6.0)} + \text{(6.0)} \\ \text{(6.0)} + \text{(6.0)} \\ \text{(6.0)} + \text{(6.0)} \\ \text{(6.0)} + \text{(6.0)} \\ \text{(6.0)} + \text{(6.0)} \\ \text{(6.0)} + \text{(6.0)} \\ \text{(6.0)} + \text{(6.0)} \\ \text{(6.0)} + \text{(6.0)} + \text{(6.0)} \\ \text{(6.0)} + \text{(6.0)} \\ \text{(6.0)} + \text{(6.0)} + \text{(6.0)} \\ \text{(6.0)} + \text{(6.0)} + \text{(6.0)} \\ \text{(6.0)} + \text{(6.0)} + \text{(6.0)} \\ \text{(6.0)} + \text{(6.0)} + \text{(6.0)} + \text{(6.0)} \\ \text{(6.0)} + \text{(6.0)} + \text{(6.0)} + \text{(6.0)} \\	- ا
	1 75em	5,	200	Ny Mes		10.14.01	10 M. C.	ั้ง เก็บไม่	340	10 m	15,	5,7%	2 4 20	100 V		<u>800</u>	· 6: •
			ת א	*	h 1		j	_	: [:	2.2	11	2 %	- :	100	50	~ ′	

1!

H

Page determined to be Unclassified Reviewed Chief, RDD, WHS IAW EO 13526, Section 3.5 Uate: 1 5 APR 2013

	<i>,</i> :	2 1/2	1:11	1	-9-67	TITLE	FLE: CH	ER A	VIATIO	N COR	PORAT	ION	PAG	7	I.
	CHECKED		<u></u> -	-		1		Aβ	<u>þin</u> e	lex_	<u>"A "</u>	ن 	Mos	43-3.	رو <u>ان</u> دره
			·	<u> </u>				,	T			•	REPO	MY No.	
]														
ļ		-			+		+-	ريبين ڪ						-	
į	K	***					!								
	MOMENT	^	1	4	15,00	7.8.44	181	7777	20434	56	-147	3	<u></u>	740.	1061
	1 1				3/-	7 /4/1	72481	7	2043	567/-	-147	7117	712-	-219,740 18,160.	220,490
ĺ	BENDING *88.5-	J			-15,00	18:47	74611	÷ 0	9849	1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1	147	\$35	32.	002	
	ENDIA 88.5			-	5/-	7-	1 2 6	7	91-	177	10		イ -	002/15/-	
	1 1	6			9.00	78.74	25719	0	15774	- 1695	32370	3000	1249.	-145,280.	
l	514	4					25		7 3	- 1-	-31	36	- 12	-145	
	SHEAR	*	434.5	459	-9,00	-HH.82 0	15129	0	7225	310	32370	1316	9 4 3	57640	
	15/12/12		* 4		-	H -	2 %		2 1	, w	-32		3	15.7.	_
Ž.	787	Cond.					A-4.		<u>\$</u>	L,	<i>†</i>	@@	نځ ا		
; ! !	CRITI	ľ	7 6		!	73. 17			3(3) 2 -	<i>\</i>		©(\$		99 + +	
ž Ž	5		Ref. pg.		Red h		Ret. pg.		43837(@-@) 43837(@-@)	Ref. pg.	1	-60 +660		56) 56)) (
* * * * * * * * * * * * * * * * * * *		+						+	+		 ,	1000 1000 1000) () () () () () ()	
		Item S.	£ 2/2/3	Momes	6.67	103.19cc	X'N'V	440	ار ان ان ان ان ان N. H. V.			18 3			
		1	マツ		h v 1	- 1	<u> </u>	+	- 	\$ \(\frac{1}{2} \)	(i	`} 	25.	: % 	

	PREPARED GHECKED		Hill	ì	afe 7- 62	TITLE	LETCHER .	AVIATIO	N CORPO	RATIO.4	PAG	-
į	APPROVED						_A _E	pene	€('χ '	A"_		42.
	MOMENT		7		-15.00	28.44			-1753	-767	-5324. 318.	-185,510
	BENDING • 110.5	-	3		-15.00	-44.82			/ 	-5730	-2814.	-57840 -1
	514	١	^		9.75	44.82			07226-	-/4230	-40CH-	752,570
	SHEAR			8.071	4.75	-44.52 0			370	-19230	1552.	- 9330. 34300.
	CRITICAL	Cond	Ref. pa. //	,	Ref. bo. 17		Ret. pg.	(9) - 89879((0)+(0)) +43837((0)-(0))	Ref. pg. A-5		© + @ + @ + @ + @ + @ + @ + @ + @ + @ +	0 + (3/0) + (3
		Item	225	7/8 X		10 W. c.c.	χ̃ιν ,		はない		386 386	<u>2007</u>
			~ ~~	, ;-	400		2 2 %	22	364	- 6	70 70	7

Page determined to be Unclassified Reviewed Chief, RDD, WHS IAW EO 13526, Section 3.5 Uate: 1 5 APR 2013

PREPARED R.W. H111	10-10-62 FLETCHER AVIATION COMPANY	PAGE 7 O-10
CHREKER	APPENDIX "A"	Mobel Custom
APPROVED		# 43.300 Repont No.

CRITICAL DESIGN CONDITIONS

A comparison of the data on the preceeding pages for revised Conditions #4, 5, 6 and 7 with the corresponding data for all the other design conditions in the earlier original part of this report indicates a need for a new Summary of Critical Design Conditions. As on page 27 of this report, the following tabulation of the critical structural elements in the tank shows which design conditions produce the greatest loads on these items.

Item	Critical Load	Criteria
Eye-bolt (attach hook) Central casting Steel frames Fins & attachments Tank shell	(15), 2 & 5 (15), 5 3 (15), 7 & 11	Max. R _z + R _x Bending Dn. ld., bending Max. fin load Shr. + mom., ≠ max. drag load

Condition #15 is an ejection condition, to be proved by an actual ejection test. (See page 27.) Condition #2, critical for the bending produced in the central casting by the highest sway brace reaction, may be replaced by Condition #3 with its loads increased by 2.6%. This eliminates Condition #2 as a test condition. Since Condition #3 test loads and data have already been prepared on the basis of loads increased by 2.9%, testing will be conducted to these latter loads. (See page 27)

It now appears that all structural items will be proved out by conducting static tests of four design conditions.

REQUIRED STATIC TEST CONDITIONS

Condition #3 - Flight (with loads increased by 2.9%)

Condition #5 - Flight
Condition #7 - Flight

Condition #11 - Arrested Landing

Page determined to be Unclassified Reviewed Chief, RDD, WHS IAW EO 13526, Section 3.5 Uate: 1 5 APR 2013

INC Term 1763

PREPARED EN Hil	1 10-15-62	FLETCHER AVIATION CORPORATION	PAGE /D 7-//
CHREKED		TITLS	Moses diefory
APPROVED		APPENDIX "A"	43.300 Report No.

STRESS ANALYSIS

Two new design conditions create critical loads on some items of structure, as has been shown on the previous page. To substantiate the structural integrity of the tank, an item by item review of all affected parts will be made. Reference page numbers are to the original load and stress analysis sections of this report.

Section (T.S. To.O - 52.) (Pq. 28)

Design loads, 5 = C629 #

M = 172,690 in-165

Loods from revised flight condition, Cond. #5.

M = 75450 in-165 } Pg. A.L

New loads are . not critical

Center Section Shell (T.S. #52.1 - 109,5)

Dusign loads, 5 = 9880

M = 328, 540 in-16=

Loads from revised flight condition, Cond. "7

5 = /172/

M = 220, 490 in-165 } Pg. A-8

= 5660 #/in2 (Fig. 50)

= <u>5000</u> = .4991

220 490 = 10170 fin-

= 19170 = .5055 20000

145 Term 1801-1

APPENDIX "A" AP	APPENDIX "A" MEDIA CITY OF THE PROPERTY OF TH	MEPARED R M. Hill 10-15-67		PAGE // 1-1
APPENDIX "A" APPENDIX "A" All 300 Appendix "A" All 300 Appendix "A" All 300 Appendix "A" All 300 Appendix "A" All 300 Appendix "A" All 300 Appendix "A" All 300 Appendix "A" All 300 Appendix "A" All 300 Appendix "A" All 300 Appendix "A" All 300 Appendix "A" All 300 Appendix "A" All 300 Appendix "A" All 300 Appendix "A" All 300 Appendix "A" All 300 All 300 All 400 Appendix "A" All 300 All 400 All 400 All 400 All 400 All 300 All 400 All 300 All 400 All 300 All 400 All 300 All 400 All	APPENDIX "A" M3.300 Her Section, cont. M.S. = 14991 + 1.5085 With an original M.S. = .28, the original design condition is still the more severe. New loads are not critical. Section (T.S. *1095 - 1595) Pg. 31 As noted on pg. 31, the materials and ction properties are identical to those the more highly loaded nose section. The critical design loads were S = CC29 M = 172, C90 in-1bs Prev. pg. 4 pg. 28 M = 172, C90 in-1bs Prev. pg. 4 pg. 28 M = 175, C30 in-1bs Pg. A-9 1250 215 = 2400 *Inr (Pg. 29) H. 1360 1250 215 = 12900 *Inr 21600 = .2860 M.S. = 28602 Shell structure is still adequate for	HECKED	TITLE	
Genter Section, cont. M.S. =	M.S. = 1 -1 = .40 i. With an original M.S. = .28, the original design condition is still the more severe. New loads are not critical. Section (T.S. *1095 - 1595) Pg. 31 As noted on pg. 31, the materials and ction properties are identical to those the more highly loaded nose section. The critical design loads were S = cc29 M = 172, c90 in-lbs Prev. pg. & pg. 28 Mads from revised flight condition, cond. 7 S = 5373 M = 185, c30 in-lbs Pg. A-9 = 245373 = 2600 */in* (Pg. 29) **185, 630 xlis = 12900 */in* = 12900 = .2866 **12900 = .8062 M.S. = 28662 Shell structure is still adequate for	PROVED	APPENDIX "A"	43.300
M.S. = 14991 +> .5085 .: with an original M.S. = .28, the original design condition is still the more severe. New loads are not critical. Aft Section (T.S. *1095 - 1595) Pg. 31 As noted on pg. 31, the materials and section properties are identical to those of the more highly loaded nose section. The critical design loads were 5 = 6629 M = 172, 490 in-165 Loads from revised flight condition, Cond. 7 S = 5373 M = 125, 630 in-165 Pg. A-9 Ps. = 2600 = .2866 f. = 185, 630 x1.5. = 12900 */in* Rs. = 12900 = .8062	i. With an original M.S. = .28, the original design condition is still the more severe. New loads are not critical. Section (T.S. $\#/oqS - 15qS$) Pg. 31 As noted on pg. 31, the materials and ction properties are identical to those the more highly loaded nose section. The critical design loads were $S = CC29$ $M = 172$, eqo in-lbs Prev. pg. & pg. 28 Mads from revised flight condition, Cond. 7 $S = 5373$ $M = 185$, C30 in-lbs Pq. A-9 = $24.53.73 = 2600$ $M.S. = 2860$ $M.S. = 2860$ M.S. = 12900 M.S. = 12900 M.S. = 12900 Shell structure is still adequate for			
with an original M.S. = .28, the original design condition is still the more severe. New loads are not critical. Aft Section (T.S. * logs - 1895) Pg. 31 As noted on pg. 31, the materials and section properties are identical to those of the more highly loaded nose section. The critical design loads were S = CC29 M = 172, C90 in-lbs Coads from revised flight condition, Cond. 7 S = 5373 M = 125, C30 in-lbs fs = 2 x 53.73 = 2000 */in = (Pg. 29) Rs = 2000 = .28CC for 12900 = .28CC fs = 12900 = .80C2 10000	with an original M.S. = .28, the original design condition is still the more severe. New loads are not critical. Section (T.S. *1095 - 1595) Pg. 31 As noted on pg. 31, the materials and ction properties are identical to those the more highly loaded nose section. The critical design loads were S = CC29 M = 172, c90 in-lbs Prev. pg. & pg. 28 ands from revised flight condition, Cond. 7 S = 5373 M = 125, C30 in-lbs Pg. A-9 = 245373 = 2600 *1/n² (Pg. 29) = 185 630 x16 = 12900 *1/n² 21600 = .2866 Tooo = .2866 + .8662 Shell structure is still adequate for	Senter Section	cont.	1 .
original design condition is still the original design condition is still the more severe. New loads are not critical. Aft Section (T.S.*1095 - 1895) Pg. 31 As noted on pg. 31, the materials and section properties are identical to those of the more highly loaded nose section. The critical design loads were 5 = 6629 M = 172, 690 in-165 Acods from revised flight condition, Cond. 7 5 = 5373 M = 125, 630 in-165 fs = 2 + 5373 = 2600 */in = (Pg. 29) Rs = 2600 = .2866 fs = 185, 630 x1.5 = 12900 */in = 21000 */in = 21000 = .2800 = .2800 = .2800 = .2800 = .28000 = .2800 = .28000 =	with an original M.S. = .28, the original design condition is still the more severe. New loads are not critical. Section (T.S. *1095 - 1595) Pg. 31 As noted on pg. 31, the materials and ction properties are identical to those the more highly loaded nose section. The critical design loads were S = CC29 M = 172, c90 in-lbs Prev. pg. & pg. 28 ands from revised flight condition, Cond. 7 S = 5373 M = 125, C30 in-lbs Pg. A-9 = 245373 = 2600 *1/n² (Pg. 29) = 185 630 x16 = 12900 *1/n² 21600 = .2866 Tooo = .2866 + .8662 Shell structure is still adequate for		M.S. = 1	-/
original design condition is still the more severe. New loads are not critical. Aft Section (T.S. *logs - 1895) Pq. 31 As noted on pq. 31, the materials and section properties are identical to those of the more highly loaded nose section. The critical design loads were 5 = 6629 Prev. pg. & pq. 28 Loads from revised flight condition, Cond. 7 5 = 5373 Pm. M = 175, 630 in-165 Pq. A-9. fs = 2 x 53.73 = 2600 Pm. Ps = 2600 = .2866 fb = 185, 630 x/15 = 12900 Pm. Rs = 12900 = .8062	original design condition is still the more severe. New loads are not critical. Section (T.S. *logs - 1895) Pg. 31 As noted on pg. 31, the materials and ction properties are identical to those the more highly loaded nose section. The critical design loads were $S = CC29$ $M = 172$, eqo in-1bs $\begin{cases} & & & & & & & & & & & & & & & & & & $.4991 + .5085	.48
More severe. New loads are not critical. Aft Section (T.S. #logs - 1595) As noted on pg. 31, the materials and section properties are identical to those of the more highly loaded nose section. The critical design loads were 5 = 6629 M = 172, 690 in-1bs Loads from revised flight condition, Cond. 7 5 = 5373 M = 185, 630 in-1bs fs = 2 ± 53.73 = 2600 #lin (Pg. 29) Ps = 2600 = .2866 fo = 185, 630 x1.5 = 12900 #lin (Pg. 29) Rs = 12900 = .8062	more severe. New loads are not critical. Section (T.S. *log s - 159.5) Pg. 31 As noted on pg. 31, the materials and ection properties are identical to those the more highly loaded nose section. The critical design loads were $S = CC29$ Prev. pg. 4 pg. 28 M = 172, cqo in-lbs Prev. pg. 4 pg. 28 M = 172, cqo in-lbs Prev. pg. 4 pg. 28 M = 185, c30 in-lbs Pg. A-9 = 245373 = 2600 *lin* (Pg. 29) = 2600 = .2866 = 185, 630 *1.5 = 12900 *lin* 21.60 M.5 = 2866 + .8062 shell structure is still adequate for	: with an c	original M.S. = .28, +1	se '
Aft Section (T.S. *1095 - 159.5) Pq. 31 As noted on pq. 31, the materials and section properties are identical to those of the more highly loaded nose section. The critical design loads were $S = CC29$ $M = 172, C90 \text{ in-1bs}$ $Loads from revised flight condition, Cond. 7$ $S = 5373$ $M = 185, C30 \text{ in-1bs}$ $f_s = 2 \pm 5373 = 2000$ $H. 136$ $R_s = \frac{2000}{9070} = .28CC$ $R_b = \frac{125}{1000} = .80C2$ $R_b = \frac{12900}{1000} = .80C2$	Section (T.S. *1095 - 1895) Pg. 31 As noted on pg. 31, the materials and etion properties are identical to those the more highly loaded nose section. The critical design loads were $S = CC29$ Prev. pg. 4, pg. 28 M = 172, 690 in-1bs Prev. pg. 4, pg. 28 M = 172, 690 in-1bs Prev. pg. 4, pg. 28 M = 185, 630 in-1bs Pg. A-9 = 245373 = 2600 */in* (Pg. 29) = 2600 = .2866 = 185, 630 x16 = 12900 */in* = 12900 = .8062 12900 = .8062 12000 = .8062 12000 = .8062 12000 = .8062	original desig	n condition is still	the ;
As noted on pg. 31, the materials and section properties are identical to those of the more highly loaded nose section. The critical design loads were $5 = 6629$ $M = 172$, eqo in-1bs $\begin{cases} & & & & & & & & & & & & & & & & & & $	As noted on pg. 31, the materials and ction properties are identical to those the more highly loaded nose section. The critical design loads were $5 = 6629$ Prev. pg. 4 pg. 28 M = 172, eqo in-lbs Prev. pg. 4 pg. 28 Mads from revised flight condition, cond. 7 $5 = 5373$ M = 185, 630 in-lbs Pg. A-4 = 245373 = 2600 */in = (Pg. 29) = 2600 = .2866 = 185, 630 *1.5 = 12900 */in = 12900 *1000 M.5. = .2866 +> .8062 shell structure is still adequals for			fical.
section properties are identical to those of the more highly loaded nose section. The critical design loads were $S = CC29$ $M = 172$, eqo in-lbs $CC29$ C	the more highly loaded nose section. The more highly loaded nose section. The critical design loads were \$ = 6629 Prev. pg. & pg. 28 That from nevised flight condition, Cond. 7 \$ = 5373 Pg. A-9 = 245373 = 2600 Pin	Att Section (T.	5. 1095 - 1595) Pg	. 31
The more highly loaded nose section. The critical design loads were $S = CC29^{\#}$	The more highly loaded nose section. The critical design loads were 5 = 6629 M = 172, 690 in-165 Prev. pg. 4 pg. 28 Prev. pg. 28 Prev. p	section broke	pg. 31, the materials	and
$5 = 6629$ $M = 172$, eqo in-lbs Rev. pg. & pg. 28 Loads from revised flight condition, cond. 7 $5 = 5373$ $M = 125$, c30 in-lbs $f_s = 2 \times 5373 = 2600$ $f_s = 2 \times 6373 = 2600$ $f_s = 2600 = .2866$ $f_s = 125 \times 630 \times 1.5 = 12900$ $f_s = 12900 = .8062$ $f_s = 12900 = .8062$	5 = 6629 Prev. pg. & pg. 28 M = 172, eqo in-lbs Prev. pg. & pg. 28 ads from revised flight condition, cond. 7 S = 5373 Pg. A-9 M = 185, 630 in-lbs Pg. A-9 = 2x5373 = 2600 Pin = (Pg. 29) = 2600 = .2866 = 185, 630 x16 = 12900 Pin = (Pg. 29) = 12900 = .8062 M.S. =	of the more	highly locally as	those
$S = 6629$ $M = 172$, L_{90} in-1bs A pg. 28 Loads from revised flight condition, L_{90} . 28 L_{90} from revised flight condition, L_{90} . 7 L_{90} for L_{90	5 = 6629 M = 172, 690 in-1bs Prev. pg. & pg. 28 Pads from revised flight condition, Cond. 7 S = 5373 M = 185, 630 in-1bs Pg. A-9. Pg. A-9. Pg. 29) Pg. A-9. Pg. 29) Pg. A-9. Pg. 29) Pg. A-9. Pg. 29) Pg. A-9. Pg. 29) Pg. A-9. Pg. 29) Pg. A-9. Pg. 29) Pg. A-9. Pg. 29) Pg. A-9. Pg. 29) Pg. A-9. Pg. 29) Pg. A-9. Pg. 29) Pg. A-9. Pg. 29) Pg. A-9. Pg. 29 Pg. 29 Pg. 29 Pg. A-9. Pg. 29 Pg. 29 Pg. A-9. Pg. 29 Pg. 29 Pg. 29 Pg. A-9. Pg. 29 Pg. 29 Pg. A-9. Pg. A-9. Pg. 29 Pg. 29 Pg. 29 Pg. 29 Pg. 29 Pg. 29 Pg. 29 Pg. 29 Pg. 29 Pg. 29 Pg. 29 Pg. 29 Pg. 29 Pg. 29 Pg. 29 Pg. 29 Pg. A-9. Pg.	The critical de	sian loads were	ction.
Loads from revised flight condition, Cond. 7 $S = 5373 \text{ f}$ $M = 125, 630 \text{ in-1bs}$ $f_s = 2 + 5373 = 2600 \text{ fin}^2 (Pg. 29)$ $R_s = \frac{2600}{9070} = .2866$ $f_b = 185 + 630 \times 165 = 12900 \text{ fin}^2$ $R_b = \frac{12900}{16000} = .8062$	ads from revised flight condition, Cond. 7 S = 5373 # M = 185,630 in-165 } Pq. A-q = 2x53.73 = 2600 #/in (Pq. 2q) = 2600 = .2866 = 185,630 x1.5 = 12900 #/in 21.60 M.5. = .2866 +> .8062 shell structure is still adequate for	5 = 6629 #		
Loads from revised flight condition, Cond. 7 $S = 5373 \text{ f}$ $M = 185, 630 \text{ in-lbs}$ $f_s = 2 + 5373 = 2600 \text{ fin}^2 (Pg. 29)$ $R_s = \frac{2600}{9070} = .2866$ $f_b = \frac{185}{2.600} = .8062$ $R_b = \frac{12900}{16000} = .8062$	ads from revised flight condition, Cond. 7 S = 5373 # M = 185,630 in-165 } Pq. A-q = 2x53.73 = 2600 #/in (Pq. 2q) = 2600 = .2866 = 185,630 x1.5 = 12900 #/in 21.60 M.5. = .2866 +> .8062 shell structure is still adequate for	M = 172, 690	in-lbs } (rev. pag. &	pg. 28
$M = 185, 630 \text{ in-lbs}$ $f_S = \frac{2 + 53.73}{4.136} = 2600 \text{ fin}^2 (P_g, 29)$ $R_s = \frac{2600}{90.70} = .2866$ $f_b = \frac{185}{21.60} = .8062$ $R_b = \frac{12900}{16000} = .8062$	M = 185,630 in-165 \ Pq. A-q = 2x53.73 = 2600 #/in (Pq. 2q) = 2600 = .2866 = 185,630 x1.6 = 12900 #/in 2 21.60 M.5. =	Loads from rev	vised flight condition.	Cond. 7
$f_{s} = \frac{2 \times 5373}{4.136} = 2600 #/in^{2} (R_{g}, 29)$ $R_{s} = \frac{2600}{9070} = .2866$ $f_{b} = \frac{185}{2.60} \frac{630}{6.00} \times 1.5 = 12900 #/in^{2}$ $R_{b} = \frac{12900}{16000} = .8062$	= $\frac{2 \times 5373}{4.136}$ = $\frac{2600}{10^{2}}$ = $\frac{2600}{9070}$ = $\frac{2866}{9070}$ = $\frac{2866}{1000}$ = $\frac{12900}{1600}$ = $\frac{12900}{1600}$ = $\frac{8062}{1600}$ = $\frac{2866}{1000}$ + $\frac{12900}{1600}$ = $\frac{8062}{1600}$ shell structure is still exequate for	J - 33/3	0- 20	Ì
$R_{b} = \frac{2600}{9070} = .28CC$ $f_{b} = \frac{185}{21.60} \frac{630}{1600} = .2900 \text{ f/n}$ $R_{b} = \frac{12900}{16000} = .2002$	= 2600 = .2866 9070 = .2866 = 185 630 x1.5 = 12900 */in2 21.60 = .8062 16000 = .8062 M.S. =	f = 2 C=2		
$R_b = \frac{185,630 \times 1.5}{21.60} = 12900 \% n^2$ $R_b = \frac{12900}{16000} = .8062$	= 185 630 x1.5 = 12900 */in2 = 12900 = .8062 16000 M.5. =			i
$R_b = \frac{185,630 \times 1.5}{21.60} = 12900 \% n^2$ $R_b = \frac{12900}{16000} = .8062$	= 185 630 x1.5 = 12900 */in2 = 12900 = .8062 16000 M.5. =	Rs = 2600 = ,2	844	
R _b = 12900 = .8062 16000	= 12900 = .8062 16000 = .8062 M.5. =	<u> </u>		ļ
i i	shell structure is still adequate for	21.60	= 12900 7/11	Í
i i	shell structure is still adequate for	Rb = 12900 = .8	3062	
77.5. = -/= 1.17	shell structure is still adequate for		A4 =	
	shell structure is still adequate for		2866 +> .8062	-/= .17
: shell structure is still adequate for	new loading committeens.	: shell structur	e is still adequate for	
new louding conditions.		new loading a	conditions.	· ·
				Ĭ

Page determined to be Unclassified Reviewed Chief, RDD, WHS IAW EO 13526, Section 3.5 Uste:

1 5 APR 2013

<u></u>	MANE	DATE	ESTALES AVA	ATION CORPORATION	Truck of
FREPARED	EN Hill	10-15-62	mus	ATION CORPORATION	PAGE 12 - A
CHECKED			4000	4 4 4	Modes dirate
APPROVED			APPEN	101X "A"	HEPORT No.
				-	
# .	1544419	-501 L	49		
	Design				
	REA	= 2/68	88 [#] }	<i>0</i>	
	RX	= 9461	, # }	Ag. 32	
		from re		nd. *5	
	_	= 257/	_	;	
:	,	= 1742			
ļ	Since	the oria	inal M.S	in the s	teel lun
<u>.</u>	and in	the th	readed b	ortion of	+h.
	castina	are b	oth "Hial	" (i.e o	11/E
	these	items a	ce still	satisfactor	
			2.,,,	الاعتاد الماعد	γ.
=2	0179 195	ting	(Pq. 30	37, 38)	
	The abo	ove cas	sting is c	citical in	bendino
	at sect.	A-A, +	rom the	high hoo	k & swav
	brace loc	ads of	Cond. "5.	In compu	iting the
	bending	momen	t at this	section, a	an
	4NNECESSA	rily con	scruative	value of d	= a fac
	the relativ	re -stiffr	ness paras	neter was	shasen for
	المراج المراجع	ial anal	4315. QBP	Siderina t	المدولية والمطا
3	support a	Troraca	カロ ブカル ノ	norr tinal	-k 11
7	foam fill	er bone	dina a	value of	d = 20
	nay safe	ly be us	red in fic	iding the	secuiro-1
1	bending d	oefficie.	nts.	value of a	7
	Moment	coeffic	ients for	Ra Con &) and s
	(24° away) per	Fig. 11 T	N 920	J ANG G
	For	Ŕ	Fig. 11, T.	121	į.
		T)	- id		

ILE form Fica-1

PREPARED	R.W. Hill	10-17-62	PLETCHER AVIATION CORPORATION	PAGE 1-11
CHECKED		m	71.5	Moore, Gustan
Appliques			APPENDIX "A"	H3,300 REPORT No.
: ! :	1-170 60			
	20179 C 9			\$
	Critical	loads fi	com Cond. 5, pg. A	1-4
	RZA =		•	
	51 =			
	-		9)(.193 x 25719019 x	11065)
	* **	6100 in	· · ·	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
•				
	f = 461	1.196	<u>0 19111</u>	
	= 301	870 Min 2	*	
	F = 410		-	1
	04		,	
•			M.5. = 41000	-/ = .00
•			1.33 _ 30870	i
,			/.33 , 30870	

Page determined to be Unclassified Reviewed Chief, RDD, WHS IAW EO 13526, Section 3.5 Date: [4 5 APR 2013

APPENDIX B

Optional Four-Fined Tail Section
Drawing SK 29100-1305

Page determined to be Unclassified Reviewed Chief, RDD, WHS IAW EO 13526, Section 3.5 Uate: \$\int 5 APR 2013

Page determined to be Unclassified Reviewed Chief, RDD, WHS IAW EO 13526, Section 3.5 Uate: 15 APR 2013

DOD 5200.1-R) DEC 78
REVIEW ON 24 OCT 83

Page determined to be Unclassified Reviewed Chief, RDD, WHS IAW EO 13526, Section 3.5 Uate: 15 APR 2013

CONFIDENTIAL

AD 346750

DEFENSE DOCUMENTATION CENTER

FOR

SCIENTIFIC AND TECHNICAL INFORMATION

CAMERON STATION, ALEXANDRIA. VIRGINIA

CONFIDENTIAL

DECLASSIFIED IN FULL Authority: EO 13526 Chief, Records & Declass Div, WHS

Date: 5 APR 2013

NOTICE: When government or other drawings, specifications or other data are used for any purpose other than in connection with a definitely related government procurement operation, the U. 5. Government thereby incurs no responsibility, nor any obligation whatsoever; and the fact that the Government may have formulated, furnished, or in any way supplied the said drawings, specifications, or other data is not to be regarded by implication or otherwise as in any manner licensing the holder or any other person or corporation, or conveying any rights or permission to manufacture, use or sell any patented invention that may in any way be related thereto.

NOTICE:

THE DOCUMENT CONTAINS INFORMATION AFFECTING THE NATIONAL DEPENSE OF THE UNITED STATES WITHIN THE MEAN-ING OF THE ESPTENAGE LAWS, TITLE 18, U.S.C., SECTIONS 793 and 794. THE TRANSMISSION OR THE REVENUTION OF ITS CONCENTS IN ANY MANNER TO IN UNAUTHORIZED FERSON IS PROBLETED BY LAW.

Page determined to be Unclassified Reviewed Chief, RDD, WHS IAW EO 13526, Section 3.5 Date: 11 5 APR 2013

DEPARTMENT OF DEFENSE WASHINGTON HEADQUARTERS SERVICES

1155 DEFENSE PENTAGON WASHINGTON, DC 20301-1155

MEMORANDUM FOR DEFENSE TECHNICAL INFORMATION CENTER
(ATTN: WILLIAM B. BUSH)
8725 JOHN J. KINGMAN ROAD, STE 0944

AUG 1 2013

FT. BELVIOR, VA 22060-6218

SUBJECT: OSD MDR Cases 12-M-3144 through 12-M-3156

At the request of the documents, we have conducted a Mandatory Declassification Review of the documents in the above referenced cases on the attached Compact Disc (CD) under the provisions of Executive Order 13526, section 3.5, for public release. We have declassified the documents in full. We have attached a copy of our response to the requester. If you have any questions, please contact Ms. Luz Ortiz by phone at 571-372-0478 or by e-mail at luz.ortiz@whs.mil, luz.ortiz@osd.smil.mil, or luz.ortiz@osdj.ic.gov.

Robert Storer Chief, Records and Declassification Division

Policet Storen

Attachments:

- 1. MDR request w/ document list
- 2. OSD response letter
- 3. CD (U)

April 26, 2012

Department of Defense
Directorate for Freedom of Information and Security Review
Room 2C757
1155 Defense Pentagon
Washington, D.C. 20301-1155

Sir:

I am requesting under the Mandatory Declassification Review provisions of Executive Order 13291, copies of the following documents. I have tried several times to acquire them through DTIC, but the sites stated they are not available.

I am conducting research into the previous methods used to disseminate biological agents. Many source I use to have access to have been deleted from the internet. On numerous occasions I have been informed that formerly classified information that was declassified, have now become classified again (since 911). My attempts to locate such Executive Orders, regulations, laws, or other changes to this question have not successful nor revealed a specific source. As such I would appreciate any information you can shed on this question.

Documents requested.

AD 348405, Dissemination of Solid and Liquid BW (Biological Warfare) Agents Quarterly 12-M-3144 Progress Report Number 14, 4 Sept - 4 Dec 1963, G. R. Whitnah, February 1964, General Mills Report number 2512, General Mills, Inc., Minneapolis, MN, Contract number DA 18064 CML 2745,102 pages. Prepared for U.S. Army Biological Laboratories, Fort Detrick, Maryland. Approved by S.P. Jones, Director of Aerospace Research at General Mills. Project No. 82408. General Mills Aerospace Research Division, 2295 Walnut Street, St. Paul 13, Minnesota. AD 346751, Dissemination of Solid and Liquid BW (Biological Warfare) Agents, Quarterly 12-M-3145 Progress Report Number 12, March 4 - June 4, 1963, G. R. Whitnah, July 1963, General Mills Report number 2411, General Mills, Inc., Minneapolis, MN, Contract number DA 18064 CML 2745. 184 pages. Approved by S.P. Jones, Director of Aerospace Research at General Mills. Project No. 82408. General Mills Aerospace Research Division, 2295 Walnut Street, St. Paul 13, Minnesota.

AD 346750, Dissemination of Solid and Liquid BW (Biological Warfare) Agents, Quarterly 12-M-3146 Progress Report Number 13, 4 June - 4 Sept 1962, G.R. Whitnah, October 1963, General Mills

Report number 2451, General Mills, Inc., Minneapolis, MN, Contract Number DA 18064 CML 2745. 19 pages (?)

AD 332404, Dissemination of Solid and Liquid BW (Biological Warfare) Agents, Quarterly 12-M-3147 Progress Report Number 7, Dec. 4, 1961 - March 4, 1962, by G.R. Whitnah, February 1963, General Mills Report Number 2373, General Mills, Inc., Minneapolis, MN, Contract Number DA 18064 CML 2745. 123 pages.

AD 333298, Dissemination of Solid and Liquid BW (Biological Warfare) Agents, Quarterly 12-M-314 B Progress Report Number 9, June 4, 1962 - Sept. 4, 1962. by G.R. Whitnah, October 1962, General Mills Report Number 2344, General Mills, Inc., Minneapolis, MN, Contract Number DA 18064 CML 2745. 130 (or 150) pages.

AD 332405, Dissemination of Solid and Liquid BW (Biological Warfare) Agents, Quarterly 12-M-3147 Progress Report Number 8, Period March 4, 1962 - June 4, 1962. G.R. Whitnah, August 1962, General Mills Report Number 2322, General Mills, Inc., Minneapolis, MN, Contract Number DA 18064 CML 2745. 198 pages.

AD 329067, Dissemination of Solid and Liquid BW (Biological Warfare) Agents, Quarterly 12-W-3150 Progress Report Number Six, G.R. Whitnah, February 1962, General Mills Report Number 2264, General Mills, Inc., Minneapolis, MN, Contract Number DA 18064 CML 2745. 103 pages. Approved by S.P. Jones, Manager, Materials and Mechanics Research, General Mills Research and Development Office, 2003 East Hennepin Avenue, Minneapolis 13, Minnesota.

AD 327072, Dissemination of Solid and Liquid BW (Biological Warfare) Agents, Quarterly /2-M-3157 Progress Report Number Five, 4 June - 4 Sept 1961. by G.R. Whitnah, November 1961, General Mills Report Number 2249, General Mills, Inc., Minneapolis, MN, Contract Number DA 18064 CML 2745.

AD 325247, Dissemination of Solid and Liquid BW (Biological Warfare) Agents, Quarterly 12-M-3152 Progress Report Number 4, 4 March - 4 June 1961, by J.E. Upton for G.R. Whitnah, Project Manager. February 1963, General Mills Report Number 2216, General Mills, Inc., Minneapolis, MN, Contract Number DA 18064 CML 2745. General Mills Electronics Group, Research Dept., 2003 East Hennepin Avenue, Minneapolis 13, Minnesota. 225 pages.

AD 324746, Dissemination of Solid and Liquid BW (Biological Warfare) Agents, Progress 12-M-3133 Report 3 Juen - 3 Sept. 1960. by G.R. Whitnah, October 1960, General Mills Report Number 2125, General Mills, Inc., Minneapolis, MN, Contract Number DA 18064 CML 2745. 78 pages

AD 323599, Dissemination of Solid and Liquid BW (Biological Warfare) Agents, Quarterly 12-M-3154 Progress Report Number 2, for period 4 Sept - 4 Dec 1960, by G.R. Whitnah, February 1961, General Mills Report Number 2161, General Mills, Inc., Minneapolis, MN, Contract Number DA 18064 CML 2745. 90 pages? Mechanical Division of General Mills, Inc., Research Department, 2003 East Hennepin Avenue, Minneapolis 13, Minnesota.

AD 323598, Dissemination of Solid and Liquid BW (Biological Warfare) Agents, Quarterly 12-M-3175 Progress Report, for period 4 Dec. 1960 - 4 March 1961, by G.R. Whitnah, May 1961, General Mills Report Number 2200, General Mills, Inc., Minneapolis, MN, Contract Number DA 18064 CML 2745. 95 pages.

AD 337635, Dissemination of Solid and Liquid BW (Biological Warfare) Agents, Quarterly 12-M-3156 Progress Report No. 10, period Sept. 4, 1962 - Dec. 4, 1962. G.R. Whitnah, Project Manager, Approved by S.P. Jones, Aerospace Research, February 1963. 247 pages.

Sincerely

