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STUDIES OF PLASMAS AND MHD INTERACTONS IN SUPERSONIC FLOWS 

Abstract 

AFOSR GRANT #FA9550-06-1-0081 

Richard B. Miles and Sergey 0. Macheret 
Department of Mechanical & Aerospace Engineering 

Princeton University, Princeton, NJ 

Work this past year has involved theoretical and experimental efforts directed towards exploiting 
the use of MHD and plasmas for boundary layer control, the development of a new concept for 
power extraction from high temperature surfaces, and the development of a new diagnostic for 
plasmas and high-speed flows. Two control strategies are being examined: the snow-plow arc 
and the dielectric barrier discharge. The snowplow arc uses a constricted surface discharge 
which is accelerated by a magnetic field and pushes the air with it. The dielectric barrier 
discharge uses an electric field gradient along the surface that couples to the flow. Theoretical 
work has focused on the optimization of both of these concepts for efficient control of boundary 
layers in high speed flow and on interactions with AFRL on model development and validation. 
The power extraction concept involves the development of a new pulse sustained thermionic flat 
panel for extracting power from hot surfaces. The new diagnostic is Radar REMPI, which is 
based on scattering of microwave radiation from a small laser-induced ionization region in a 
flowing gas, combusting zone, or plasma. It has the potential for local temperature, velocity, 
species, and electron density measurements. 

Extended Abstract: 

Snowplow Arc 
This past year, theoretical work on the snow-plow arc has sought to develop a more thorough 
understanding of the push work and heat generation, as well as to understand the observed 
physical attributes of the arc, with the intention of optimizing its potential for boundary layer 
flow control. In this case, minimization of heating versus push work is the paramount issue. 
Theoretical analysis shows that the heating can be considerably reduced by operating in a regime 
dramatically different from that in the early experiments. Equation 1 shows the ratio of the push 
work to the Joule heat dissipation, where Jle.; is the average gas velocity of the boundary layer 
(Eq. 2), E and Bare the electric and magnetic field strengths, and Qe and Qi are the electron and 
ion Hall parameters. 

push work ue,;B u . = u+(E/BfJ}:).; 
Joule dissipation E- ue,;B (Eq 1) e,, 1 +0i2; (Eq 2) 

If the applied electric field is made very weak, close to E=uB (for typical flow conditions E= 10 
to 20 volts/em), thus making the plasma velocity only slightly greater than the gas velocity, the 
denominator in Equation 1 is dramatically decreased and efficiency dramatically improved. This 
electric field is too weak to sustain the plasma, and, therefore, ionization must rely on low duty 
cycle, high repetition rate short (on the order of a few nanoseconds), high voltage pulses. 
Through previous work at Princeton these pulses have been shown, to produce high efficiency 



plasmas. Flow acceleration would occur predominately between the ionizing pulses and 
substantial acceleration will require strong electric current. Estimates show that the ratio of push 
work to Joule dissipation (including both dissipation between the pulses and the energy 
deposited during the pulses) can be increased dramatically from 1 o-2 to approximately 1' while 
providing velocity increments of V - V 0 = 40 to 80 meters per second with magnetic field 
strengths of 3.2 Tesla and an average conductivity of 2 mho per meter, corresponding to an 
average electron number density, ne, approximately equal to 2 x 1012 cm-3

. This newly found 
regime of "slow" magnetically-driven surface discharges looks very promising for boundary 
layer acceleration. 

On the experimental side, collaboration with CMI, Inc. has led to the development of a new 
sapphire-based, electrode/dielectric element shown in Fig. 1 (bottom inset). This utilizes a 
titanium copper electrode that is thermally matched to the sapphire, so the unit is robust to 
heating. Because of the high thermal conductivity of the sapphire it is expected that this will 
permit higher current densities, and, thus, more efficient coupling to the boundary layer. The 
device is mounted into a transparent in-draft wind turmel and inserted into our superconducting 
magnet. The wind turmel is currently being instrumented with pressure taps and fitted with a 
shock generating wedge on the opposite side so the effects of the snow plow arc on shock
induced separation can be observed. 

1.2" * 3. 75" Quartz 
viewing window · Iff 

Figure 1: Mach 2.4 in-draft wind turmel with the test section showing the electrodes and a 1 0 
degree wedge to create a shockwave. 

Dielectric Barrier Discharge 

There has been much interest in the dielectric barrier discharge configuration shown in Fig. 2. 
An exposed upper electrode is paired with an insulated electrode located under a thin dielectric 
and an RF discharge is struck between the two. It has been observed that this discharge 
generates a surface jet in the direction indicated in the figure. We have undertaken a detailed 



modeling effort to understand the origin 
of this surface jet and propose an 
optimized wave form for increasing the 
surface jet velocity. 

Our modeling indicates that charging of 
the dielectric occurs during the time the 
exposed upper electrode is negative, 
causing a field gradient to be established 
which subsequently drives the positive ions 

~uced"ow 
exposed electroo. 

-·· . ~plasma 

dielectric 

Insul~ecl electrode 

Figure 2. Dielectric barrier discharge configuration 

in the downstream direction. These ions then couple to neutral air and create the jet. The 
problem with the sinusoidal-varying potential is that there are significant reverse forces that 
ar1se. 
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Figure 3. Average forces from a 
sinusoidal applied voltage 

Figure 3 shows the average force near the 
exposed electrode for an applied sinusoidal 
voltage. From the large-scale, left pointing 
vectors at the lower-left part of the diagram it 
is apparent that this reverse force significantly 
decreases the effectiveness of the device. Our 
modeling has indicated that, with the 
application of a very short, negative high 
voltage pulse to generate the ionization, and a 
positive DC bias, this reverse effect can be 
suppressed and a larger average downstream 
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Figure 4. Average forces from a high 
voltage pulsed applied voltage 
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velocity generated, as shown in Fig. 4. The Figure 5: Schematic of pulse generator and DC 
challenge in the modeling and understanding driven dielectric barrier discharge 
the dielectric varying discharge plasma 
actuators stem from the physics of the 
problem. The ability of this new model to capture the important physical phenomena has 
provided a useful capability for this optimization effort. Work on this program has been jointly 
supported by Boeing (St. Louis). 



A dielectric barrier discharge driven by 
nanosecond pulse generator and de 
bias, as shown in Fig. 5, has been built. 
nanosecond pulse generator is operated 
burst mode in order to provide contrast 
Schlieren measurements of the jet 
created by the dielectric barrier 
discharge. Figure 6 shows an 
asynchronous movie of the jet 
generated by the dielectric barrier 
discharge. The frames proceed from 
top-to-bottom, left-to-right. The 
velocity of the structures is on the order 
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Figure 6: Asynchronous shadowgraph images of the pulsed 
DBD surface jet . Frames are top to bottom, left to right. 
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of 25 m/sec, increasing by almost a factor of two with the DC bias. This diverging structure is 
driven by the small-scale surface jet in proximity to the barrier discharge. That jet will have 
much higher velocity then this large-scale downstream structure. Work is on-going to measure 
that velocity and (with Dr. Jon Poggie at AFRL) to development parallel architectures for the 
code and expand the code capabilities. 

Thermionic Power Conversion 

Large temperature gradients high work 
function 

occur between surfaces hot emitter 

exposed to high temperatures r-----f-=~iillf!IC==iir=::::n=S:ein==n==;;:::~:::c:::;;::=;;?--==7--, 

associated with engines and/or 
speed flight and the structure 
elements that support those 
materials. It would be 
attractive to find a way of 
converting a significant 
portion of that heat into 
electricity, not only for 
applications on board a 
vehicle, but also for augmenting 
cooling. For modeling work 

to control 
subsvstem 

Figure 7: Diagram of thermionic surface panel for power 
extraction and enhanced cooling 

high 

undertaken during the past year, we believe that an efficient two-dimensional thermionic panel 
can be built and operated with an internal plasma sustained by high voltage pulses. 

Two types of thermionic devices have been previously examined: a narrow gap configuration 
and a cesium vapor-filled ignited mode configuration. In the first case, to avoid significant 
current reduction by space charge build-up, very small interelectrode gaps on the order of a few 
microns are required. These are impractical for structural elements, however, recent work on 
nanoscale thermionic devices may provide some new capabilities in this area. More commonly, 
space charge is overcome by a discharge that is sustained in few millimeter interelectrode gap 
filled with cesium vapor. Cesium is chosen because of its low ionization potential, but it adds 
complexity to the configuration since the vapor pressure of the cesium must be controlled by a 



low temperature reservOir that may not be easily incorporated into an extended panel 
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configuration. The use of an inert gas together with 
high voltage pulses relieves the need for a low 
temperature reservoir and opens up the opportunity 
for a two-dimensional device. A diagram of such a 
device is shown in Fig. 7. Figure 8 shows the power 
expended in the generation of electrons for 1 000 K 
argon at various pressures in a 5 mm gap device. 
This power is sufficient to sustain 10 amps/cm2 of 
current, and, averaged over the pulse repetition rate, 

o.o s.ox1o·• 1.ox1o.. 1.sx1o.. 2.ox1o.. 2.sx1o.. corresponds to only a few percent of the power 
t(sec) h f 

Fig.8 Power expended in the generation of generated by t e device itsel . Because of the small 
electrons in the gap by high field, separation between electrodes, the high voltage 
nanosecond pulse. pulses only correspond to voltages of a few tens of 

volts. Experimental work is planned over the next 
year with additional support from the Air Force Research Laboratory. 

RadarREMPI 

We have undertaken the development of a new diagnostic approach based on the scattering of 
microwave radiation from a small laser-induced plasma. The laser is tuned to a wavelength that 
produces a very small plasma through resonant-enhanced, multiphoton ionization, and this 
plasma is observed by microwave scattering. Due to the high sensitivity of the microwave 
detection and its direct relationship to the density of charges, the whole lifecycle of the laser
induced plasma can be measured from the initial stages of ionization during the nanosecond laser 
pulse, through the growth of the spark evolution, and finally the loss of charge through 
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Figure 9: Radar REMPI configuration 

recombination and attachment. The resonant
enhanced nature of the laser-generated 
ionization provides the capability of using this 
technique for spectroscopy by frequency tuning 
the laser. By observing the rate of 
recombination, particularly for very weak 
sparks, this approach may provide a new 
method for the measurement of temperature. 
Of particular interest for this work is the 
potential for using the rise time of the pulse to 
determine the ambient electron number density. 
The geometry of the scattering is shown in 
Figure 9. Modeling of a true laser pulse 
indicates that the electron number density 

increases in an exponential fashion during the rise time of the laser pulse, reaching significant 
ionization in a time related to the initial electron number density and the fluence of the laser. 
Figure 10 shows the different rise times associated with different laser pulse energies all focused 
to the same focal volume. By observing the time between the initial turn-on of the laser pulse 
and the observation of the microwave scattering, it may be possible to extract the initial electron 
number density. Work is currently on-going to examine this possibility. 
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Figure 10: Measured Radar REMPI signal 
in air at pulse energies showing the delay 
in rise time associated with pulse energy. 
Arrows are from Figure are predictions 
based on the laser pulse shape. 
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