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f'Juomogeneous Nucleation oj.,.Yapor CQn~ensation.I. Thermodynamic Aspects* 
~·~ @) &-:.~· 
fn).,r\ }AMEs E. McDoNALD 
\j/Y ~ bulilule. of Almosplierk Pllysi&s, Tile U11iun-sily of AriwM, TMcw11, Arizo!llf 

tv~ ~ , (~eceived February 2, 1962) . 

r!{;) . I~ abse~ce.of all f~retgn 111atertals o~ wall surfaces, phase transttions of the type vapor-to-
\ ~(\ _; hqutd or bqutd-to-sobd are blocked by an activation-free-energy barrier. The latter arises from 
IV \d' aurface-free energy increases resulting from appearance of embryos of the more condensed phase. 

The thermodynamic• of this type of phase traJ!sition are examined in Part I for the particular 

@ 
case of vapor condensation, a case for whic!J;. t;!t~ry and experiment now ata:nd in tolerably . {) 1...d- ~;;)..> good agreement. In Part II', kinetic aspects~ co~sidered·. . 

1. ·INTRODUCTION ' t ~I'd' ' h pom or soiidifit:atwn at t e liquid's freezing 

( t1.flJ'!].JT _is pro~b.ly rather widely believed that if point! \!V '(~ .atr contammg water vapor, say on a humid It is the objective of the following discussion. 
summer day, is .cpoled to its dew point, droplets to present a summary of the general principles 

: tJ I} of water are certain to form by condensation. of nucleation of phase transition, using vapor 
Similarly, it is fairly generally thought that if condensation as the example. Because the kinetic 

(fi£)~Cjq water is cooled to 0°~, freezing of ice is assured. theory of gases is well' developed, whereas the 
V I Now although common experience does support kinetic theory of liquids is not, it becomes pos­
(/?1? 'N ~oth vi~ws: these vi~ws are incorrect if taken as sible to describe rather more thoroughly the 
....____,...... P 'generahzatlons. apphcable under all conditions. nucleation mechanism for condensation of vapor 
f-:L:"')) I They .beco~e ~ncorrect in those situations where than for solidification from the melt. However, 
Y(_/' U, vapors or hqmds are cooled under conditions of the general principles are quite similar in these 

uncommon purity, ·characterized by complete two important types of phase transition, so the 
t?f) N f} abs:ence of foreign mat~rials or wall surfaces implications will be broad. In Part I of this 
~ whtch can render subtly tmportant assistance to discussion, chief emphasis is placed upon thermo­

molecu.les seeking to condense or to solidify in dynamic aspects. Part II will subsequently sum­
well-behaved manner. Given completely pure marize the main features of the kinetics of 
vapor· or liquid free· from such extraneous influ'- nucleation processes. Emphasis throughout will 
ences we find that substances behave under cool- be placed upon physical interpretation of the 
ing as if condensation point and fi:eezing point basic mathematical description of nucleation 
simply did not exist-i. e., the pure phases ex- theory. 
hibit, respeetively, the phenomena of supersatu- As a point of terminology, it may be noted 
ration and supercooling. The latter phenomena that the type. of nucleation to be considered here 
play important roles in many industrial processes is referred to as lwmogeneous nucleation· because 
and crop up in a wide variety of problems of it takes place in a completely homogeneous phase 
basic scientific significance. with no foreign bodies (ions, hygroscopic con-

From both a theoretical and a practical point densation nuclei, wall surfaces) present. When 
of view, one's insight into the mechanism of the any of the latter are present and act to assist 
everyday mode of "well-behaved" condensation the system to get over the activation barrier 
and freezing is greatly enhanced by an under• which we shall see is imposed by surface-free­
standing of the thermodynamic and kinetic prin-· energy considerations, the process is properly 
ciples of the "anomalies" of supersaturation and called· "heterogeneous nucleation." Systems of 
supercooling. Indeed, once one appreciates the the inevitable degree of contamination accom­
latter principles, he clearly recognizes that the panying almost all but scrupulously arranged 
truly anomalous case is really that of the familiar laboratory experiments afford. only examples of 
behavior of condensation at the vapor's dew heterogeneous nucleation .. It is our excessive fa-

miliarity with the superficial features of euch 
• Supporied in part by the U. S. Office of Naval R-n:h. ordinary heterogeneoui nucleation procesaes that 
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871 VAPOR CONDENSATION . I 

FIG. 1. Wire model of p-v-T sur­
face· for a substance such as water. 
Note metastable extensions of all· 
ideal-vapor isotherms. In absence 
of heterogeneous nucleation, the 
system's characteristic point moves 
smoothly past the saturated vapor 
locus up along these m~tas~ble 
extensions as pressure IS ra1sed 
isothermally, starting from an • 
ideal vapor state. 

stands in the way of clear. recognition of the 
nature of the conceptually more simple and 
more fundamental homogeneous. nucleation pro­
cesses which will be our main concern in the 
remainder of this discussion. 

The ground work of the theory of nucleation 
'of phase transition might be said to have been 
laid by Gibbs but the theory was not put into 
any very specific form until about the third and 
fourth decades of the· present century, notably 
by Becker and Doering, Farkas, Volmer, Zeldo­
vitch, and others. A fairly detailed, but not 
uniformly clea.r treatment of principles is pre­
sented by Frenkel,! Mason2 presents almost 
verbatim a recent modification of Zeldovitch's 
analysis due to Farley, and gives a good critical 
discussion of the present state of experimental 
verification of the theory. A recent publication 
of the Faraday Society• should provide the 
interested reader with extensive bibliographi'cal 
references plus several excellent summaries by 

I J. Frenkel, Kinetic Theory of Liquids (Dover Publica-
tions, New York, 1955), pp. 366 ff. . . 

•·B. J, Mason, Physics of Clouds· (Oxf•ml Umvers1ty 
Press New York, 195-7), pp. 2-11. 

a F~raday Society, The Physical Clttm~stry of Atr'!sols 
(Aberdeen Univers1ty Press; Faraday Soctety Dtscuss1ons 
No. 30, Aberdeen, 1960), pp. 9-45. 

such workers as Dunning, Mason, Fletcher, and 
others. 

2. FREE ENERGY OF EMBRYO FORMATION 

We may bring vapor to a supersaturated state 
of given temperature T and vapor pres.~ure P 
(where p>p', p' being the saturation vapor 
pressure of the substance· in question at T) along 
a variety of paths, of which an isothermal com­
pression path represents one very simple ex­
ample. As we compress a vapor isothermally, we 
eventually reach its nominal condensation pres­
sure, i.e., the saturation vapor pressure P'(T) of 
the liquid phase of the same substance. Ele­
mentary discussions typically assert that further 
attempts to compress the system lead only to 
formation of steadily increasing. amounts of the 
liquid. phase, the characteristic point of the 
system merely sliding along an isobar-iSotherm 
on the liquid-vapor region of the substance's 
equilibrium surface. This elementary viewpoint 
sidesteps the nucleation problem and can be 
considered correct only if foreign nuclei or wet­
table walls are assumed present to induce con­
densation at p'. In the absence of those latter 
heterogeneous nucleating agencies, the character-
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FIG. 2. Wire model of the Gibbs free-energy surface 
(f-p-T surface) for· a pure substance, showing metastable 
extensions of isotherm& and unstable segments of complete 
van der Waal's· isotherms on upper leaf. 

istic point of the system merely continues to 
move up along the metastable extension· of the 
ideal-vapor isotherm on which it approached 
point p', T. 

This is illustrated on a three-dimensional wire 
model of an equilibrium p-v-T surface, designed 
by the writer for use in classroom discussions of 
nudeation thermodynamics and shown in' Fig. 1. 
A few representative wire isotherms are· shown 
in the vapor region, and short extensions into 
the supersaturated vapor region can be seen to 
represent the metastable supersaturated states. 
attained by isothermal compressions. (This 
model was designed to illustrate a number of 
other important thermodynamic principles and 
processes beyond the scope of this discussion. 
The writer would point out that such wire models 
prove more considerably useful in classroom. use 
than molded surfaces of the type commercially 
available.) 

Now as our system's characteristic point 
moves up the met.1stable extension· of its ideal­
vapor isotherm, its specific Gibbs free-energy 
f (dimensions ergs g-1} rises above that for 
the liquid phase at the same temperature T. 
The differential relation df=vdp-sdT, where v 

and s are, respectively, the specific volume"and 
specific entropy of the vapor·, may be integrated 
along the metastable isotherm from saturation 
pressure p' to some supersaturated pressure· p, 
giving as the excess off over that for liquid at 
the same temperature T famil'iar expression 

!J.j=RTI'n(pjp'), (1) 

where R is the gas constant per gram of the 
vapor in question . We assume p to be well below 
the substance's. critical press:.tre, so that the 
ideal gas law holds. It 111 ust be stressed that at 
the moment we assume no appearance of em­
bryonic· dropJ·ets in our supersaturated vapor. 
As we shall see below, this is an U·nrealistic as­
sumption but one that is conceptually useful for 
the moment. 

For any pure substance, it is possible to con­
struct a three-dimensional f-p-T surface. En­
lightening. discussion of the general form and 
principal properties of such a surface have been 
given by Call'en,4 and by Pippard, 5 and from 
their treatments the writer drew the idea of 
constructing the wire model. shown in Fig. 2. 
No numbers are entered on the axes since t~1is 
model. is only a qualitative representatioH. It 
shows vapor-region isotherms rising steeply 
(large specific volume) to the locus of intersec­
tion with the liquid-region isotherms which have 
much· lower slope, in accordance with the deri­
vative properties of the relation clf=vdp-sdT. 
The model suggests the greater negative slope 
(large specific entropy) of the isobars in the 
vapor as contrasted with the liquid region. But 
most significantly for the present discussion, the 
model shows the extensions· of all the vapor iso­
therms that overlie the liquid region near the 
locus of saturation. (The latter locus is the mid­
rib of the leaf-shaped "surface" extending ;di­
agonally across the top of the model. Note that 
this skew curve has as its projection on the p-T 
plane the familiar saturation vapor pressure 
curve, shown in the model as a dotted curve. 
The verticals are merely supports, though they 
aid in revealing the preceding projective rela­
tionship.) That these extensions, counterparts 
of those in the fJ-v-T model of Fig. 1, overlie the 

' H. 0. Callen, TMrlllodynamics (John 'Wiley & Sons, 
Tnc., New York, 1960), pp. 146-163. 

1 A .. B. Pippard, CliJssical TMrmodynamus (Cambridg<: 
University. Press, New York, 1960),. pp. U~121. 
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liquid region, is consistent with the metastable 
nature of the associated supersaturated states, 
for the vapor there has a finite excess of free­
energy over that of the liquid at the same tem­
perature .. (The cuspate junctions of these meta­
stable extensions and ttie crossribs on the upper 
part of the model in Fig. 2 are related to the· 
van der Waals.' equatron of state, but will not 
be discussed here. Their significance is best ap­
preciated by consulting Callen's or Pippard's 
treatments of. this type of surface.) 

Since it is the spontaneous tendency of thermo­
dynamic systems to assume a state of lowest 
possible Gibbs free-energy, we must now ask 
why a system whose characteristic point is some­
where on the metastable supersaturated vapor 
portions of the surfaces modeled in Fig. 1 and 
Fig. 2 docs not simply jump to the available 
state of lower f in which newly formed liquid 
phase is present in equilibrium with the residual 
vapor. The answer is this: The only possible 
route to the state of smaller f is via dropwise 
condensation (assuming no foreign nucleants and 
remoteness of containing walls or else completely 
nonwettable walls) ; and as soon as embryonic 
droplets enter the picture we must reckon with 
the surface-free-energy of the interfaces between 
the drops and the surrounding vapor. When a 
bit of vapor condenses, the decrease in free-energy 
due to condensation (bulk-free-energy change of 
phase transition) varies as the mass condensed, 
i.e., as the volume of liquid droplet formed, while 
the surface-free-energy increase varies as the 
area of the droplet. If r is the droplet radius, 
the positive term varies as r2, the opposing nega­
tive term as ,a, and regardless of the magnitudes 
of the coefficients of these terms, the positive r2 

term is mathematically certain to dominate over 
the ,a term in some sufficiently small r interval 
above zero. Therein lies the obstacle to attaining 
the stable state of lower f depicted in Fig. 2. 
That preferred state lies a finite distance away 
and may only be reached by a path that crosses 
the ,,.forbidden region" in which the increases in 
f due to appearance of new surface energy domi­
nate over bulk-free-energy decreases in j. 

We can describe this mathematically by now 
taking as a: more convenient !-reference state 
that in which we initially have supersaturated 
vapor at some given high vapor pressure p(p > p') 

at temperature T,. and in which it is· assumed 
that not a single embryonic droplet exists. The 
latter proviso, it must be carefully noted, is to 
be construed as ruling out dimers, trimers,. and 
all oth~r clusters of molecules, however small. 
Then the rise AF in the free-energy of ,our 
system as we isothermally and (essentially) iso­
barically form a spherical embryo of some small 
radius r can be written as 

AF=4Tr2tr- (4/3)7rr3pRT InS. (2) 

The first term on the rrght is the intrinsically 
positive contribution of the surface-free energy, 
where tr is the specific surface-free-energy having 
dimensions ergs cm-2• (In liquids, tr is also the 
familiar surface tension; in the case of the solid­
liquid interfaces arising in nucleation from the 
melt "surface tension" loses· meaning, but re­
mains well-defined as the specific surface-free­
energy.) The second term, in which p is the 
li'quid density and S=P/P' is the vapor super­
saturation ratio, represents the contribution: to 
AF made by the bulk-free-energy change. e Its 
form is taken from (1), but the sign is· reversed, 
of course, because of our new choice of reference 
state. The bulk-free-energy change in going from 
vapor at p', T to liquid inside the drop formally 
comprises three parts. The first is that obtained 
in isothermally lowering the vapor pressure from 
p to p'. The second is obtained in condensing 
vapor at p', T to liquid at p', T, ai1d is zero by the 
equilibrium property of f. The third is obtai.ned 
in isothermally compressing the liquid from pres·­
sure p' to the high rnternal pressure of the liquid 
within the droplet of radius r, but can be shown 
to be a numerically quite small contribution in 
view of the small specific volume· of the liquid. 
(There are alternative ways of formulating the 
over-all problem here which ignore surface-free­
energies as such and instead deal explicitly with 
the effects. of high internal pressure on the free­
energy of the droplet. These can be shown to be 
fully equivalent albeit seemingly dissimilar ther­
modynamic routes to the same goal. 7) Of these 
three contributions, only the first is important 
and is. written as the right-hand member of (2). 

• The reader should note carefully that Swill, throughout 
this paper,. denote the vapor supersaturation ratio p/p', 
and not the entropy, for which the !lame symbol is often 
used. 

T J, Frenkel, see reference 1, p. 369, 
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~ ' .. ..•. :: .; ·. ·· ··:.-:· .. :. 
FtG. 3. Wood· and plastic model of liF-S-r 

surface for water· vapor at 0°C, 

Equation (2) specifies tJ.F a!\ a function of r 
and S for fixed T, whence it follows that one· may 
construct a tJ.F surface over the r-S plane. A 
quantitatively accurate model of such a tJ.F-r-S 
surface is shown in Fig. 3, calculated for the case 
of water vapor at 0°C. It displays many thermo­
dynamic features of importance in homogeneous 
nucleation theory. Note from (2) that for the 
limiting case S= 1, the bulk term vanishes and 
llF rises monotonically as a parabola, depicted 
in the model of Fig. 3 by the transparent plastic· 
lamina in the S= 1 plane (p' is identified on the 
model as p,., denoting infinite radius of curva­
ture of the liquid surface, the condition tacitly 
assumed to hold in the customary definition 
of saturation vapor pressure p') . For sttbsatu­
rated vapors, the tJ.F curve would rise even 
more steeply, because a fractional S makes the 
second term on the right go positive,. reinforc­
ing the effect due to the surface-free-energy 
barrier, a thermodynamicall)r quite understand-· 
able situation. 

For S> 1, however, the second term is a nega­
tive contribution to tJ.F, its magnitude rising as 
the degree of supersaturation is raised. Its pres­
ence assures existence of a maximum in tJ.F at 

some r, the value of the latter falling as S rises. 
This very important feature of (2) is depicted 
in the model of Fig. 3 by the calculated profiles 
of the wood laminae inserted for integrally rising 
values of S ranging from 2 up to. 10. As we shall 
note in the next section, the presence of these 
maxima is fundamentally significant ·in nucleation 
theory. They represent the summits of the free­
energy activation barriers blocking the forma­
tion of the new phase, and can only be sur­
mounted as a result of rare fluctuation phenom­
ena. in the supersaturated vapor .. 

It is illuminating to consider somewhat further 
the cases where S 5: 1. Even though such thermo­
dynamically stable cases. do not enter directly 
into phase transition nucleation processes, ~me 
of their characteristics shed important light on 
our problem. Contrary to the ordinary point of 
view, subsatumted or just-saturated vapor is 
not completely free of embryos of the liquid 
phase· (nor is supercooled liquid completely free 
of embryos of the solid phase) . Rather, there 
exists a statistically steady-state population of 
embryos characterized by the Boltzmann-like dis-· 
tribution function 

(3) 

where now we use the number of molecules g per 
embryo rather than r as the size parameter of 
the embryo; llg is the number per unit volume 
of vapor of embryos of size g, k being the Boltz­
mann consta.nt. 8 Here tJ.F is, by (2) , a rapidly 
increasing function of r (and hence also of g) 
because the second term on the right i'n (2) is 
nonnegative when S 5: 1. IUustrative values of ng 
computed from the distribution Eq. (3) for 
water vapor at 0°C with saturation ratios S=O;S 
and S= 1 and for three values of g are given in 
Table I. One cubic· centimeter of half-saturated 

TABLE I. Values of n, (em-•) for two saturation ratios S. 
• 

g, ..... 

s-o.s 
s-t:.o 

5 

1X104 

3XI01 

10 

SXt0:-1 

5XtO-t 

20 

6Xto-u 
6XIQ-11 

1 J. Fre'nkel see reference J, p .. 380, gives a lengthy 
proof of Eq. (3); the present wnter knows of no simple 
proof for existence of such a BoltJ:mann-type distributiOn 
of embryos. To express t:J.F in terms of 1; and not r, one 
uses the relation (4/J)trr'p•fm,. where p til the density o( 
the liquid pha,!lll 1\nd 111 i& the mass of one 11\0l.ec;ul.e .. 
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water vapor at 0°C is seen to contain the sur­
prisingly large number of ten thousand 5-mers 
at any instant, some destined momentaril); to 
fly apart, others to be joined by a thitrd to con­
tribute in the next moment to the i'nstantaneous 
6-mer population. The concentration of clusters 
of larger g falls sharply according to (3), and for 
S = 0.5 and g = 20 is already down to about 
to-u cm-3• For just-saturated vapor all the n0 

are larger, of course, and Table I shows that 
even 10-mers, embryos that have been built up 
by a fortuitous, concatenation of collisions to an 
aggregate of ten water molecules, are present at 
S= 1 in mean concentration as high as 0.05 cm-3,. 

i.e., an average density of about 1 in every 20 
cm1 of saturated vapor. 

However,. 10-mers lie well on the low side of 
the maxima of the tJ.F curves (Fig. 3) even for 
moderate degrees of supersaturation, so their 
fluctuatory presence in just-saturated vapor by 
no means provides the necessary path for the 
system to begin its condensational phase transi­
tion to stabilize itself in the face of further com­
pression. Equation (3) predicts still more infre­
quent occurrence of embryos of size beyond the 
limit of 20 displayed in Table I. Thus, one finds 
that a cube of just-saturated vapor some 2.3 
miles on edge would, on the average, contain 
just one embryo of size g = 25, and Eq. (3) shows 
that one would not find a single cluster of si·ze· 
g=50 at a randomly chosen instant unless. he 
haci a cube of vapor ten million miles on edge! 
Trading ti'me for volume, one thus. senses that 
with vapor samples of moderate size (say, cloud­
chamber size), he would have to wait for cen­
turies.on end before witnessing the chance· build­
up of an evanescent aggregate containing even 
only a few tens of molecules in his sample if 
S= 1. This is another way of viewing the prac­
ticaily insuperable barrier to phase transition 
at S= 1 in absence of heterogeneous nucleants 
such as ions or wettable surfaces. 

In computi'ng values of n0 for Table I, a tacit 
assumption conventionally made in nucleation 
theory has been employed, namely that we may 
proceed without too serious error, to assume 
that the hulk value of u continues. to have mean­
ing even down to quite small molecular aggre­
gates. This assumption has been discussed from 
a variety of viewpoints in recent years, sum-

maries of which will 'be found, for example, in 
Davies and Rideal.' Briefly, weight of argument 
indicates that we may use bulk values of u with 
fair accuracy down to values of g of order ~0-20 
hut below that the effective value of u probably 
diminishes and we should resort to some direct 
molecular-bond calculation. This limitation must 
be kept in mind in assessing all results for very 
small g. The above-estimated 5-mer concentra­
tion, for example, must be regarded as good· to 
order of magnitude at best. 

3. CRITICAL EMBRYOS AND THE KELVIN 
EQUATION 

In discussing Eq. (2) and the model shown 
in Fig. 3, we have noted that !J.F exhibits a 
maximum for any case for which S> 1. Invoking 
the basic rule that any process in which F de­
creases. is a spontaneous process, we see that if, 
by any means, our system can get up to the 
summit of its particular tJ.F curve, the slightest 
additional condensational growth of the droplet 
beyond the si'ze associated with that summit 
should lead to irreversible growth of the drop at 
the expense of the supersaturated vapor, and the 
characteristic point will plunge rapidly down the 
right-hand portion of the tJ.F-r curve (Fig. 3). 
That is,. the r for which !J.F attains its maximum 
will be a critical embryo radius for whatever S 
we ate dealing with. 

To determine this critical radius. r*, we differ­
entiate both sides of (2) partially with respect 
to r holding T and S constant (remembering 
that while the· droplet is as tiny as a subcritical 
embryo in, say, a cubic centimeter of vapor, its 
growth will' not deplete the vapor stock by an 
amount producing measurable change in p, nor 
will its latent heat-release sensibly alter T). On 
setting the derivative equal to zero and solving 
for the thereby specified critical radius we find 

r*=2u/pRT(lnS). (4) 

This relation reveals the very important rule 
that the larger the supersaturation ratio S, the 
smaller the critical radius r*. In Table II the 
sizes of the critical embryos corresponding to 
several values of S> 1 are indicated, expressed 
in terms of numbers of molecules as well as in 

• ]. T. Davies and E. K. Rideal, Inurfacial Plu11ometu~ 
(Academic Press Inc., New York, 1961), P• 11. 
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TAIILE II. Radius r• and number of molecules g• per critical 
embryo· for various supersaturation ratios S. 

S' 2 3 4 5 6 7 8 

r• (A) 17.0 10.7 8.5 7.3 6.6 6.0 5.7 
g• 695 174 87 55 40 31 26 

terms of r* directly. Noting from Table II that 
g* is still as large as several hundred molecules 
even when we raise S beyond 2 (200% relative 
humidity if we return momentarily to the mete­
orological context), we see again how impossible 
it is to find critical embryos present unless 
S is quite high, the fundamental lesson learned 
from thermodynamic analysis of the nucleation 
problem. 

Note that Eq. (4) is just Kelvin's equation 
for the enhanced saturation vapor pressure over 
a surface of small radius of curvature, now how­
ever appearing as the equation for the critical 
radius corresponding to a given supersaturated 
vapor pressure. These two seemingly different 
interpretations of ( 4) Rre not really distinct: In 
order that an embryo of radius r* may be in 
metastable equilibrium with the surrounding 
vapor, it clearly must have just such a curvature 
as to raise its effective sa.turation vapor pressure 
from the value p' (t) to the pressure p of the 
surrounding supersaturated vapor. Of the two 
interpretations, the critical-radius interpretation 
is· much the· more meaningful' here, of course. 

If we differentiate (2) a second time and ex­
amine the resulting sign, we find the second 
derivative to be intrinsically negative for S> 1, 
confirming that our stationary value at r* is, as 
depicted in Fig. 3, a maximum. Guggenheim 
gives what seems to this· writer to be the most 
carefully and broadly formulated definition of a 
metastable state: any state which is stable with 
respect to all states differing only infinitesimally 
from the given state, but unstable· compared 
with some other state differing finitely from the 
given state. The state associated with the maxi­
mum of the llF curve for· any given value of S 
is thus, by Guggenheim's criterion, a metastable 
state. Curiously enough, we deal' here with a 
metastable state built, as it were,. upon another 
metastable slate; for the supersaturated· vapor 
itself exists in a metastable state before the be­
ginning of formation of the critical embryo that 

is itself metastable wilh r!;!fcrence to the super­
saturated vapor! 

If we substitute the value of r* from (4) back 
into the general equation (2) for l:J.F, we evalu­
ate the height of the free-energy activation 
barrier as 

llF*=1611'u3/l3(pRTlnS) 2 } =411'r*2u/3. (5) 

In (5) llF* is written in two equivalent forms, 
of which the latter, interpreted as one-third the 
product of the area of the critical embryo multi­
plied into the specific surface-free-energy can be 
carried over to nucleation of solids and used 
even. in the event that the embryo must be as­
sumed nonspherical for crystal-habit reasons. 
Gibbs used this latter form in hi's analyses, 
whence that form is sometimes identified as the 
Gibbs relation. Note that S enters (5) in such 
a way as to cause l:J.F* to fall off rapidly with 
risingS, at the. same time that (4) shows r* also 
diminishing with risingS. Equations (4) and (5) 
convey the fundamental thermodynamic moral 
of nucleation theory: Raising the degree of mper­
saturation markedly enhances the probability that 
flucf.ttation processes wilt send some embryo (Jf)er 
the top of the activation barrier in a given time be­
cause raising S reduces the· embryo size r* and the 
associated height llF* of the top of the barrier. 
Figure 3 displays this important point quite· 
clearly. On the F-S plane of that model the 
projection of the skew curve passing through all 
the· barrier summits has. been plotted as the 
dashed curve (there labeled "llF.", with c for 
"critical") that falls rapidly as the supersatura­
tion ratio increases. 

As will be elaborated in Part II of this dis­
cussion, a further enhancement of nucleation 
probability results· from increasing S-namely 
the obvious effect of increased molecular bom­
bardment rate attending any rise of vapor. pres­
sure·. But this latter effect will be shown to be 
far Jess important than that cited in the preced­
ing paragraph. 

We may summarize all that has now been 
said: Sufficient increase of S (as we shall find, 
to values somewhere in the neighborhood of 
five} finally serves to raise the molecular bom­
bardment rate and to reducer* and the attendant 
height of the activation energy barrier l:J.F*· to 
such extent that the probability of some suh-
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critical embryo fortuitously growing to super­
critical si'ze in a short time approaches unity. 
At that S value, homogeneous nucleation be­
comes an effective process, and phase transition 
can finally begin. 

From the above statements it is clear that 
nucleation is intrinsically a probabilistic event. 
We may speak of the probable rate of appearance 
of critical' embryos in a given volume of vapor 
at givenS, or more meaningfuUy, we may speak 
of the average time we must wait for a single 
nucleation event in our given volume of vapor 

at supersaturation ratio S. The latter is the 
more physically realistic way to view the matter, 
inasmuch as it is generally true that once a 
single nucleation event has occurred anywhere 
within our system, it suffices to stabilize the 
ent-ire system. In Part II we shall-, however, find 
it mathematically more convenient to ask for 
the rate of appearance of nuclei under certain 
steady-state conditions contrived to simulate 
rather well the actual conditions preceding ap­
pearance of that first, crucial nucleus in our 
system. 
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ln the absence of foreign nucleants, phase transition from vapor to liquid is blocked by a 
free-energy barrier implicit in the appearance of new surface when embryos· of the new phase 
start to form. Drawing upon thermodynamic relationships discussed in Part: I, Part: II here 
summarizes the kinetics of the homogeneous nucleation process for the case of the· vapor:t:o­
liquid phase transition. Emphasis is placed upon physical interpretation of the mathematical 
model used to obtain a nucleation rate equation for the unbalanced steady-state· case. 

I. INTRODUCTION 

WHEN vapor is cooled' t~ it~ n?minal satu~a­
tion point or when a hqUid ts cooled to tts 

nominal solidification point, the answer to the 
question of whether phase transition will or will 
not immediately occur is dependent upon whether 
or not nucleation of the new phase can take place. 
In the absence of all foreign surfaces or particles 
(heterogeneous nucleants) phase transition does 
not occur until some finite degree of supersatura­
tion or supercooling has developed. 

The thermodynamic aspects of the latter mode 
of homogeneotes nucleation were examined in Part 
1 of this discussion, using vapor condensation as 
the example.t' It was pointed out there that as 
soon as an embryonic liquid droplet of radius r 
and density p appeared .in initially supersatu­
rated vapor at pressure p and temperature T, the 
free-energy of the system is elevated by amount 

t.F= 4n2u- (4/3)1r1'3pRT InS, (1) 

where u is the specific surface-free-energy (iden­
tical. with the surface tension in the case of 
liquids),. R is the gas constant per gram of vapor, 
and Sis the supersaturation ratio equal to PIP' 
if p' is the saturation vapor pressure at tempera­
ture T. (Certain limitations were noted in Part I 
concerning use of. bulk values of u for very tiny 

• SuEported in part: by the Office of Naval Research. 
'J. E. McDonald, Am . J. Phys. JO, 870 (1962). 

aggregates of molecules and these restrictions. 
should be kept in mind in the following.) 

We saw, furthermore, that for S > 1, t.F passes 
through a maximum 

t:.F* = 16ru3/3 (pRT lnS)2 (2) 

at some embryv radius, defined to be the· critical 
rad·ius r*, satisfying the Kelvin equation 

r*=2ujpRTlnS. (3) 

Those thermodynamic considerations posed 
this dilemma: Although supersaturated vapor is 
in a metastable state because its specific-free­
energy exceeds by the finite amount RT(lnS) 
that of liquid at the same temperature, it cannot 
jump to the preferred lower- free-energy state be­
cause that jump can only proceed vi'a formation 
of tiny drops, beginning with clusters of two, 
three, four molecules etc. ; and growth of such 
embryos of the new phase carries the system up 
to states where the total free-energy of the sys­
tem has, according to (2), risen more by creation 
of new surface-free-energy of the embryonic 
drops than it has fallen by virtue of the bulk­
free-energy change accompanying the phase 
transition that produced those drops. That is, 
phase transition is always, in the homogeneous. 
case, blocked by an activation energy barrier 
(which unlike the potential barriers of nuclear 
physics will not permit tunneling at any sig­
nificant rate, this being a classical process).. 

.. 
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1 nspection of (2) and (3) suggested the only 
possible way out of this. dilemma: Jf we can 
raise S high enough, we shall lower the· height 
tlF* of the activation-free-energy barrier stand­
ing in the way of phase transition; or viewing 
it sl'ightly differently, we thereby lower r•, the 
critical embryo radius which must be exceeded 
in order that our system will spontaneously shift 
to the preferred state of lowest possible free­
energy. A further clue to the way nature finally, 
at some high S, gets over the barrier was found 
in the important fact that in subsaturated vapors 
there actually exists, as a statistically steady 
population, a distribution of embryos satisfying 
a Boltzma11n-type relation2 

(4) 

in which nu is the number of clusters· of g mole­
cures, and !J.Fu is obtained from (1) by a straight­
forward interchange of r and g as the size pa­
rameter. Jf fluctuation phenomena can, even at 
S<l, support such. a population: of molecular 
clusters,. then when S rises above unity,.we should 
surely expect a general increase in that poptlla-· 
tion at all g, since raising. S raises growth rates 
and also· lowers 'tlFu for any given g. Hence, for 
some large S (theory and observation1 both 
suggest values around 5 or 6 for this S) we can 
ex~ct to reach a poi'nt where fluctuations can 
send some favored embryo or embryos over the 
top of the free-energy barrier whereupon the 
supercritical embryos can subsequently grow 
without limit until the vapor pressure is pulled 
from p down to p' and the system is thermo­
dynamically stabilized. 

In this second part of the discussion,, we ex­
amine the kinetics of the growth and decay of 
embryos and describe a model that, although 
somewhat artificial, provides a working model 
of homogeneous vapor nucleation and makes 
possible at least rough estimates of the degree 
to which S must be raised to initiate phase 
transition. This summary draws upon ideas and 
methods of analysis developed by Frenkel,4 

Zeldovitch/ and Farley, 6 but the interpretation 
'J. Frenkel,. Kindic Theory of Liquids (Dover Publica­

tions, New York, 1955),. p. 380. 
• B. J. Mason, Tlie·Physics of Clo11ds. (Oxford University 

Press, London, 1957), p . 13. . 
• See reference 2, pp. 368 fT. 
• F .. J. M. Farley, Proc. Roy. Soc. (London) A212, 530 

(1952). 

includes a number of viewpoints that arc the 
writer's. 

II. RATES OF GROWTH AND DECAY 
OF EMBRYOS 

A spherical embryo of arbitrary radius r is 
bombarded by vapor molecul'es at a rate C=41r1'2b, 
where b=nv/4 and n is· the molecular density 
of the vapor, v the mean molecular speed. Of all 
those molecules hitting the embryo only some 
fraction q will stick, where q is the condensation 
coefficient. Using the expression for v given by 
kinetic theory,. b· may be put into such a form 
that we have condensation rate 

C= 41fr~qpj (2rmkT) 1, (5) 

where m is the mass of one vapor molecule and 
p is the prevailing (supersaturated) vapor pres­
sure. For the rate of escape E of molecules leav­
ing the same embryo, we may write 

E=C*, (6) 

where c• is the value given by (5) when we 
therei·n change p to that particular value for 
which the given embryo radius would represent 
the critical radius. The somewhat subtle basis 
for this assertion is that E has such a value that 
it would be just equilibrated by the condensation 
rate that would prevail if that sam·e size of 
embryo were· in metastable equilibrium with 
respect to vapor of that particular pressure which 
would satisfy (3) with r substituted for r*. 
Briefly, (6) is based upon an equilibrium 
argument. 

Combining (5) and (6) we find, after making 
suitable use of (3), that the ratio of escape to 
condensation for embryos of radius r satisfies 
the si.mple relation 

E/C=S<••-•> 1', S>1 (7) 

which displays the important point that em­
bryos of subcritical size fight an uphill battle 
because their evaporation rates exceed their 
growth rates. The latter is only a statement of 
average conditions, however, and occasional fluc­
tuations in collision and escape rates permit a rare 
embryo to grow to surprising size, contributing 
momentarily· to a mean distribution of the form 
of (4). A large value of S might seem from (7) 
alone to be unfavorable to growth, but this is 
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deceptive since S enters r* in such a way that 
its effect in reducing r* and tJ.Ji'* more than com­
pensates by lowering the distance to and height 
of the barrier; so as S rises the chance of a really 
favorable sequence of events sending some 
favored embryo over the top is enhanced. Note 
from (7) that, as we would expect from argu­
ments given in Part 1, the· balance condition 
E=C is satisfied when r=r•, while for stili 
greater r we have C>E, i.e., an embryo, having 
become supercritical, should keep right on grow­
i'ng until it has become a drop of molecularly 
huge dimensions. (This. supercritical stage of 
embryo growth is very closely analogous to the 
synthesis of the heavy atoms. beyond bismuth 
in a supernova, as recently elucidated by Fowler, 
Hoyle, and others. 6 In the presence of the high 
neutron-density characteristic of a supernova, 
neutrons are added faster than alpha-decay can 
reduce nudear masses, with the result that rapid 
synthesis out to mass numbers near 260 ensues, 
limiteq finally by spontaneous fission. Super­
critical embryos experience a similar excess of 
growth over decay, as in the case of the man 
who can't spend money as fast as. he can make it.) 

In the following sections we shall find it more 
convenient to identify embryo sizes through g 
rather than r since we shall be considering rates· 
of addition and removal of individual molecules. 
Thus, by replacing r by gin (5) and (6) through 
the identity ( 4/3),.r3p = gm we may speaK. of the 
condensation rate C, and evaporation rate E, 
of a g-mer. 

The writer has found that examination of 
computed magnitudes of C, and Eu for specific 
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t- '·'·,, g-+ 
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FIG. 1. Variation of condensation and evaporation rates 
with embryo size g. Case shown is for water vapor at ooc; 
S-4.0. 

• W. A. Fowler, Sci. Monthly 84, 84 (1957) .. 

9-
FIG. 2. Effect on g* due to varying Sat fixed T. 

cases proves rather illuminating. In Fig. 1 are· 
plotted curves showing the variation of these 
two opposing rates for embryo sizes up tog= 200· 
for water vapor at o•c and' for one particular 
supersaturation ratio, S=4.0. The condensation 
coefficient q has been taken as 1.0 for simplicity 
(The lowest existing estimates7 of q for water 
vapor are of order 0.01, so the absolute values 
of all points might run as much as two orders 
of magnitude lower than plotted, but this need 
not concern us here.) With· p and T fixed,. C,, 
on. present assumptions, varies only as the em­
bryo's surface area (i.e·., as gl), hence the curve 
for Cu rises monotonically as shown. The curve 
forE,, however, is seen to pass through a mini­
mum near g=30, a consequence of joint action 
of the geometric factor just considered for CQ 
and the opposing, intluence of the initially very 
rapid fall-off in intrinsic escape rate as we build 
up the embryo size from extremely small values. 
The sharp initial decrease in escape rate may be 
viewed molecularly as due to a rapid rise in net 
work of escape as we increase numbers of near 
neighbors, an effect that is initially very marked. 

Also plotted in Fig. 1 is a curve for the net 
excess of evaporation over condensation. That 
curve displays the basically important point 
that this excess is large for small g,. but finally 
vanishes at the cross-over point of the Cg and· E, 
curves·; and goes negative beyond that point, 
which is the critical point, of course. For the 
case shown in Fig. 1, the net rate of loss vanishes 
at g=87 molecules, whence g*'787 for this case. 

lf we hold T fixed, but vary S, the curve for 

1 T. Alty and C. A. Mackay; Proc. Roy. Soc. (London) 
Al49, 104 (1935). 
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E. remains unchanged since escape rates arc 
controlled only by temperature and by embryo 
size. By plotting a set of Cu curves for T=0°C 
and for several values of S from 2 to 8, Fig. 2 
was obtained. The cross-over points for each 
curve are the respective g* values, when referred 
to the abscissa. Comparison with Table 11 of 
Part I will show agreement with the g* values 
calculated there from explicitly thermodynamic 
considerations. J n Fig. 2, the C0 curve for S = 2 
would not intersect the Ea curve until we moved 
out to g=69S, an embryo of such enormous 
size, by present standards, that it could only 
occasionally fprm in a huge vapor volume (see 
Sec. V). From the ordinate scales of Fig. 1 and 
Fig. 2 note that embryo growth and decay is a 
very lively affair. The mean lifetime of a g-mer 
of some specified size ncar g*, where the absolute 
value of the net loss rate is of order 108 sec-1, is 
only about 0.01 microsecond~ Within that time, 
the g-mer will,. on the average,. have gained or 
lost a molecule, thereby moving out of its pre· 
vious g-class. We turn, in the next section, to 
more general considerations of this chaotic ex­
change of molecules between the g-mer popula­
tion and the reservoir of free molecules in the 
vapor phase. 

III. UNBALANCED, NONSTEADY~STATE 
EMBRYO GROWTH 

When a body of vapor has just been com­
pressed isothermally to a supersaturated state, 
or, as in expansion cloud chambers, has j'ust been 
expanded adiabatically to such a state, there 
will be a brief transient period in which the em­
bryo population is being built up by collisional 
processes·. Although it is not easy to analyze 
mathematically such a transient state, it helps 
in fixing ideas and in introducing needed con­
cepts to formulate the equation governing such 
an unbalanced, nonsteady-state case. 

Considering any g, embryos of that size can 
be· created either by addition of a molecule to 
some (g-1)-mer or by evaporative loss of a 
molecule from some (g+l)-mer .. Concurrently, 
g-mers can be destroyed either by growing into 
(g+l)-mers by addition of a molecule or by 
decaying into (g-1)-mers through loss of a 
molecule. Denoting by N 0 the concentration of 
embryos of size g at any instant,. and approxi· 

mating a difference equation· with a differential 
equation, we may write 

8Na/ot= (Ca-tNo-t+Ea+tNo+t) 
- (C,N.+E,N.). 

Defining I, to be the following net rate, 

(8) 

we can write 
(9) 

Equation (9) permits concise specification of 
the distinction between the general unbalanced 
nonsteady-state case just considered and two 
other cases which we wish to consider below in 
detail: The steady-state cases will be those in 
which N, does not change with time because 
the I. have one and the same value for all g. lf, 
in particular that constant value of I 0 is simply 
zero, then we have· the balanced steady-state case 
of the next section. Somewhat more generally, 
10 may exhibit some constant, nonzero value I 
for all g, In which case we· have the· unbalanced 
steady-state case which forms the basis of the 
model used below to approximate actual nuclea­
tion processes. Equation (9) is, of course, merely 
a continuity statement contingent upon conser­
vation of molecules within the embryo chain; 
and we may speak of I. as the "current". of 
embryos flowing across the link between (g-1)· 
mers and g-mers in our population . 

Farl'ey5 treats the unbalanced nonsteady-state 
equation (9) under simplifying approximations 
and obtains as a crude estimate of the transient­
time to build up the populations to 90% of the 
quasi-steady-state value a time of the order of 
tens of microseconds, i.e., brief enough com­
pared to expansion times of cloud chambers that 
we may ignore the transient phase in such ex­
perimental situations. ln shock condensation 
phenomena in supersonic wind tunnels, however, 
the entire expansion period may be only of the 
same order of magnitude as this. transient period, 
so conventional nucleation theory is somewhat 
less confidently applied in the latter instances. 
Here our concern will be limited to· instances· of 
the former type where we shall be abl'e to ignore 
the time required to build up the embryo popula· 
tion to very nearly i'ts steady-state distribution 
so (9) will not directly enter our further 
discussions. 
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IV. BALANCED STEADY-STATE CASE 

If, in (9), we specify that fu"" 0 for all g,. then 
the· N. arc no longer· variable with time since 
the "currer1t" vanishes everywhere due to local 
balance at each link of the embryo chain. This 
is just the condition for thermodynamic equi­
librium; so we may here identify N, with the 
n, of the Boltzmann-type distribution given by 
(4), with one proviso: For S> 1, the case of 
interest to us, AF exhibits a maximum, whence, 
by (4), n, exhibits a minimum at g*, the critical 
embryo size measured in number of constituent 
molecules. The existence of the latter minimum 
is,. per se, acceptable, but we are embarrassed to 
note that (4) then implies that n, rises expo· 
nentially for g>g*. To. preserve a semblance of 
physical meaning we may introduce an. artifice: 
We equip a nimble-footed Maxwell's demon with 
a perfectly reflecting surface and have him dart 
about reflecting back into. embryos of some given 
size g' > g* each molecule· that evaporates from 
a g'-mer. This task performed, our distribution 
simply cuts off at g', and the balanced steady 
state is maintained without the catastrophe of 
having an infinitely large system. 'The obliga· 
tion of introd'ucing the idea of a reflecting barrier 
terminating the embryo chain at g' removes 
direct physical meaning from our balanced 
steadv state for S> 1, of course, but its mathe­
mati~al meaning is clear. This hypothetical pop­
ulation. can be used to obtain further insight 
into the real problem of nucleation and will 
prove very useful in. the mathematical analysis 
of our third case of the unbalanced steady-state 
embryo chain with I constant but nonzero. 

Since (7) implies that, so long as g <g*, E > C, 
it is relevant to ask how our present n, distribu­
tion can be mai'ntained steady for small g in the 
face of this intrinsic excess of evaporation over 
condensation. From (8) placing I,=O and sub­
stituting, correspondingly, n, for N,, we have 
for all links in this steady-state embryo chain 
of zero current, 

(10) 

Defining the ratio of the populations of neigh­
boring g states as 

(U) 

TABI.E I. Values of J, for two supersaturation ratios S. 

g 

s- 1.0 
S•4.0 

5 10 15· 20 25 50 100 

43 J 6 12 9.3 8.0 5.2 3.8 
JO 4.1 2.9 2.3 2.0 1.3 0.94 

we find from (4), on introducing a constant A 
such that the surface-free-energy term in (4) 
satisfies the identity 41!1'2iT=Agi,. and on noting. 
g and R are so defined that (4/3),.r3RT,.gkT, 
where k is the Boltzmann constant, 

J, = s-1 exp[ (A/H) { (g+ 1) '-gl} J 
,.,.S-1 exp[2A/3kTgl],· (12) 

wherein the last form, obtained from use of a 
truncated binomial expansion, holds quite ac­
curately for g greater than about 10. Using (12),. 
some representative values of Jg for two differ·· 
ent supersaturation ratios have been computed 
and are summarized in Table· I. Consider first 
the case of S= 1, which represents a p/tys~cally 
realizable balanced steady-state case, as noted 
earlier. We see that there are over 40 times as· 
many 5-mcrs per unit volume as 6-mers, and 
about 16 times as many 10-mers as 11-mers, 
with J, falling towards larger g. Here is the clue 
to the maintenance of a steady state in face of 
the condition E/C> 1: There are so many more 
small' embryos than large ones that the· over-all 
rates of formation of (g+1)-mers from g-mers 
can fust balance the inverse process despite the 
condition E>C. Indeed, this balance condition. 
is implicit in (10). But (12) and Table 1 tell us 
rather more than (10) when we consider what 
happens as S rises above unity. At S""4, we 
find aU J, decreased by a factor of four com­
pared with S= 1, with the result that for some 
g slightly less than 100 (direct calculation gives 
87) J,= 1, and remai'ns less than one for all 
greater g. Since the condition J. = 1 is the bal­
ance condition characterizing a critical embryo, 
we conclude that raising S to 4 implies· g*=8~, 
as is confirmed by Table II of Part I. From the 
simple way in which S enters (12) we see that 
we can ded'uce further (from the values of Jg 
for S= 1 in Table I) that the critical embryo 
size for,. say .'5=3.8 must be g*=100, or for 
S""8.0 is g*=25, etc. 
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V. UNBALANCED STEADY STATE 

The balanced steady state just considered, 
although interesting and even illuminating, does 
not afford a realistic model' of nucleation because 
a nonzero current I is an essential requirement 
in any model of real nucl'eation processes. 
Strictly speaking, real cases of nucleation are 
precisely describable only in terms of the un­
balanced nonsteady-state model and its differ­
ential equation (9). However,. as a compromise 
with the mathematical difficulties inherent in 
coping directly with (9), clever use can be made 
of the fact that the transient time or relaxation 
time, as derived from (9) under crude but not 
meaningless simplification, is short compared 
with the characteristic times of many conden­
sation processes. The consequence of the latter 
fact is. this: In actual nucleation problems we 
can, to tolerably good approximation, divide tne 
nucleation process into two periods, the very 
short initial. period (transient state lasting of the 
order of tens of microseconds 011 Farley's theo­
retical estimate) when the embryo population 
is steadying off up to moderately large g, and a 
longer period (which may still be short by every­
day standards, lasting perhaps tens to. hundreds 
of milliseconds in expansion cloud chambers, for 
example) in which we may meaningfully speak 
of a quasi-steady rate of production of super­
critical embryos at scattered points throughout 
the bulk of the vapor. This second period must 
be regarded as terminating when. the condensa­
tional growth of these supercritical embryos 
begins to sensibly deplete the system of its 
excess vapor; for once the vapor pressure· so 
falls, or the temperature rises due to latent heat 
effects,.S begins to fall rapidly and the conditions 
defining our problem are no longer constant. How­
ever ,once this many embryos have been generated 
during the second period, the nucleation process, 
per se, is accomplished'. We simply are not her.e 
interested, that is, in the third and final period 
of rapid growth that lowers p top'. That period 
is an episode· o£ interest in the theory of diffu­
sional growth, but not in the theory of nucleation. 

The above considerations led early developers 
of nucleation theory to the idea of approximating 
the second crucial period in terms of a model in 
which the concentration of embryos of each 
size J!, now denoted by a new distribu.tion-func-

tion symbol· fu to avoid confusion with either N. 
or n0 , does not change with time (steady state}, 
but in which a uniform nonzero current I "Rows" 
through the embryo chain due to· a statistical 
excess of condensational growth over evaporative 
decay of embryos at each link of the chain. This 
comprises the unbalanced steady-stale case upon 
which admittedly rough but still very useful 
estimates of I are based in nucleation theory. 

To repeat, for emphasis, condensational for­
mation of (g+1)-mers from g,-mers can exceed· 
evaporative decay of the (g+ 1)-mers in spite of 
the fact that c.< Eu+I for g < g* and because of 
dominant effect of the inequality f•-1> fo· Hence, 
I can be positive for all' g within our range of 
concern (see below) and is now regarded as con­
stant for all g in that range, since our steady-state 
stipulation requires that the imbalance at any 
given link be just counteracted by the same 
imbalance at the two links on eitner side of it 
i'n order to leave the J. invariant with respect 
to time. That is, 

I=C1ft-E2/2=C2/2-E3/a= · · · 

· · · = C.J.-E.+do+l = · · ·=constant. (13) 

We now limit the g range with which we shall 
be concerned by invoking a notion due, accord­
ing to Dunning,3 to Szilard: We imagine some 
means whereby every embryo that succeeds in 
growing to size G, where G is rather larger than 
g* (perhaps about twice g*), is deftly removed 
from the system, broken down into G constituent 
molecules, and the latter re-inserted into the 
system to work their way up the embryo chain 
once more. The Szilard artifice maintains the 
steady state with only a finite number of mole­
cules in the system and provides one boundary 
condition on our unknown f~ distribution, 
namely, 

/a=O. (14) 

As will be shown a posteriori, the value of I 
inferred from the model is surprisingly insensi­
tive to changes i'n G, so our choice of G is not 
critical. 

At the beginning of our embryo chain we are 
able to introduce another useful approximation 
to reality. We saw in our discussion of the 

• W. J. Dunning in Clumistry· of th~ Solid Stat~, edited 
by W. t:. Gardner (Butterworths Scientific Publications 
London, 1955), pp .. 159-183. 

.: 
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balanced steady-state case, that for small g the 
n0 , though smaH compared with n, were still 
large absolute numbers when referred to vol'umes 
of laboratory size (order of cubic centimeters). 
Hence, to produce a current I, whose value is as 
smaH as that required in real nucleation proces­
ses, we find' from comparison of (10) with (13) 
that for very small g the fa need differ only 
inconsequentially from the n 0 of the bal'anced 
steady-state distribution «.:orrcsponding to the 
same S and T in order that the distribution 
curve be steepened just enough to support at1y 
reasonable value of I .9· Bri'efly, because n0 and 
J. are so large for very sma!I g, the two sets of 
populations satisfy, to high . degree of approxi­
mation, the relation 

(15) 

which will provide us with our second boundary 
condition on fa below, (14) being the first. 

The next step is a crucial one, for when one 
reviews the whole analysis, this next step is seen 
to unlock the door to the prediction of I. That 
the following step is so important makes it a 
source of some dismay to the present writer 
that he has. never quite been able· to see why 
anyone would ever have thought of it in the 
first place, and he is unaware of exactly when 
in the history of nucleation. theory this crucial 
trick was. first noted . The trick consists of 
forcing into the analysis, in a way that is much 
tess obvious than was the case in writing (14}, 
the characteristics of the· n0 distribution. Per­
haps (15) suggested it; perhaps sufficient man­
ipulation of the running equality of (13). led 
someone to recognize the simplification to be 
gained. In any event, the trick consists In re­
writing the general term of (13) as 

I= c.n.[f./n.- (Eu+ll c.) Uu+IIn.)] (16) 
= c.n.[f./n.- fu+tlnu+t], 

where the second form of the right member 
follows from the first form on making use of the 

•· Here it is quite important to keep in mi'nd that nuclea­
tion is actually accomplished· by values of I {units of em-a 
sec-•} that are extremely small when· compared with 
collision· frequencies measured· in the aame unite. 

balance equation (10) for the nu mod'el.1° From 
(16) we obtain the series of equations· 

I/Ctnt=/1/nt- J2n2 

I/C2n2~ /2/n2- h/na 

I/Ca-2na-2= j a-2/no-2- f a-1/na-1 

I/Ca-1na-1 =fa-t/na-t 

where boundary condition (14) has been used 
in the final· equation of thi's series. On summing 
the left and right members,. respectively, and 
usi.ng boundary condition (15), we have 

G-1 
l: (I/C0nu) = .ft/1~·1= 1. (17) 
u-t 

J n (17) note carefully that I is constant, 
though still unknown, that the characteristics 
of the unknown fo distribution function have 
entirely disappeared (!), and that (17) effec­
tively specifies our unknown I in terms of. a 
finite series of reciprocals of form 1/Cun0 • Since 
both C0 and n 0 are known functions of g, the 
device employed in (16) plus the Szilard bound­
ary conditions at G and the asymptotic equi­
valence of fa and n0 for small g have led us to 
the happy end of approximating I solely in 
terms of known quantities. 

There remains now the task of finding the 
value of the sum in (17). Using a digital com­
puter, this would be relatively easy,. and the 
writer has done· just this for several sets of 
experimental data as a means of gaining further 
insight into certain mathematical properties of 
the nucleation model (see below). However, it 
proves. possible, as many previous workers have 
noted, to obtain a fairly precise answer by ap­
proximating our finite-difference description with 
a differential equation and then to use three 
further mathematical dodges to achieve our goal. 

To make this shift in our mode of description 
we return to (16) and write (as a good approxi­
mation for those· larger g values which prove to 

•o Usc of {10) here might easily be misconstrued to 
imply that we have now restricted our model in some 
sense. In fact, however, (10) is· brought in solely as. an· 
auxiliary mathematical identity; the sole restriction of 
importance remains. the {rather good) approximati'on· that 
j, approaches 11, i'n the limit of very small f .. 
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g-+ 

Fie. J. Behavior of nucleation parameters in the cr tical 
region. Data refer to water vapor at 264°K, S-5.4, 
corresponding to experimental case studied·. by Barnard 
(see_Mason•). 

be of controlling importance), 

d 
I= -c.n.-(f.!n.), 

dg 

a form that follows from the fact the smallest 
value of the denominator of the difference quo­
tient corresponding to· the derivative is here 
unity, the least amount by which g can be varied. 
Hence, 

d(f0/n.) =- (I/C0n0)dg 

which, on integrating from g=l to g=G' yields, 
on introducing (14) and (15) as boundary 
conditions, 

(The writer would call the reader's attention to 
the interesting point that our problem of evalu­
ating I is here exactly analogous to that of find­
ing an unknown steady-state heat-flux through a 
slab for which the temperatures of both faces 
of the slab are constant and known. That is, we 

have here a two-point boundary-value problem 
with unknown flux.) 

The· integral in (18) is not expressible in 
terms of elementary functions, but use of three 
further approximations puts it into soluble form. 
The validity of the approximations· can be better 
appreciated by studying Fig. 3, which represents 
plots of data pertaining to a partic.ular expansion­
chamber experiment due to Barnard and sum­
marized by Mason.U These data were computed 
by the writer using an l'BM 650 computer, as 
part of a finite-difference solution (exact solu­
tion!) of (17). Jf we replace r by g in (5) we see 
that c. varies: as· gl, which makes it a rather 
slowly varying function, as is clearly sliown in 
Fig. 3. On the other hand, by (4), (n 0)-

1=n1-
1 

Xexp(C.F/kt) is everywhere very small except 
in the neighborhood of g*, where it passes through 
a sharp maximum, as depicted in Fig. 3. Thus, 
little error will be made by taking c. outside the 
integral in· (18) as a constant and evaluating it 
at g*, a type of approximation found useful in 
more than a few problems of mathematical 
physics. This first of our three present approxi­
mations we then follow by expanding the ex­
ponential portion of (n.)-1 in a Taylor series 
about g* where it passes through its maximum 
in a roughly symmetric manner (Fig. 3), i.e., 

t.F. = t.F*+[iJ(t.F)] (g- g*) 
iJg •• 

l[CJ (t.F)] +- -- (g-g*)2+·. ·. 
2 iJg2 .•• 

(19) 

The coefficient of the second term of the Taylor 
series. is. zero since g* is, by definition, that g 
for which iJ (t.F)/ iJg vanishes (see Part J, and 
Fig. 3). On rewriting (1) with g replacing r as 
our variable, we find that the bracketed coeffi­
cient in the last term of our truncated Taylor 
series, the negative of whi'ch we will call Q is 
given by evaluation of the second derivative at 
g• as 

Q= -[
82

(t.F)J = (2/9)Ag•-m, (20} 
iJg! .•• 

where A is as defined for Eq. (12). 
With these approximations (18} becomes! on 

uSee reference· 3, p. 17, 
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changing to a ne\v variable of int~gration 

x=g-g*, 
elo.F•JkT ~G-o• 

I-t=--- e-O•'I2kTdx. 

c •. nl -<•*-1) 
{21) 

J nspection of Fig. 3 shows that there will be 
little change produced in the value of the inte­
gral in (21) if, as our third dodge, we now shift 
the lower limit of integration to -co and the 
upper limit to + co, so long. as g* amounts to 
several tens of molecules and so long as G is 
greater than about twice g*. With that change 
of limits (whi~h is intended to convey no phys­
ical meaning at all, of course-it merely puts 
our integral into soluble form at the price of 
almost negligible numerical· error), (2l)becomes 
a known integral and writing n* for n 1e-u·•1u, 
we have 

I=C0.n*/(2rkT/Q)+. (22) 

Finally, using (5), (20) and the kinetic theory 
relation12 P=nkT, (22) can be written in such 
alternative forms as 

I= (n~/ p)(2rrm/r:)+e-li.F*IkT 

= (pjpkT)(2rrm/r:)ln*.. (23) 

Appearance of n~ as a factor in the equation 
for I displays the effectively second-order nature 
of the kinetics. of nucleation, analogous to the 
n2-dependence· met in many coagulation, recom­
bi"nation, and chemical processes as weir as in 
nucleosynthesis in stars. As we raise S,. this 
factor rises as 52, which helps to rai'se I. But 
that effect, so readily interpretable in straight­
forward kinetic terms, is relatively unimportant 
compared with the overwhelming effect of raising 
the value of the exponential. factor in (23) as 
S rises. The ratter effect, as has been stressed 
repeatedly above·, dominates the kinetics. as well 
as thermodynamics of nucleation by so lowering 
t:.F* and reducing g* that the system finally· has 
an appreciable probability of overtopping the 
activation energy barrier and generating super­
critical embryos at some detectable rate I. 

Presence of n• in the second expression for I 
in (23) must not be construed as meaning that 

12 Sinl=e n,»no, elc., we hnve, to very high degree of 
accuracy Lhe relation p -nk1', wilh n Lnkcn as Lola I number 
of molecules per unit volume, the union of n tiny fraction 
of those n into the several classes or g-mers scarcely in­
fluencin&' the pressure of the vapor. 

our theoretical model is really based upon the 
n0 distribution with its implausible minimum at 
g*. Despite the important mathematical con­
sequences of introducing the n0 distribution 
function into (16), which succeeded, by the 
stage of analysis represented by ~q. (18), in 
completely hiding the fo distribution from sight, 
our modCI and hence (23} 1's based upon the fo 
distribution. In Fig. 3 the n0 distribution is 
plotted in the form of the n0/nt ratio. A similar 
curve for the fo distribution would lie every­
where below that plotted curve, and would cut 
the g axis· at some g = G off the right edge of the 
figure .. lt aids in getting a vivid picture of the 
rarity of formation of g-mers as large as g* to 
realize that if we were to try to continue the plot 
of n 0 /nr upward beyond the top of Fig. 3 until 
the curve approached n·0 jn1 = 1 at g= 1, we 
would need a sheet of paper extending about 
1000 light years above the top of Fig. 3, assum­
ing it to be plotted on the same scalet 

From the writer's digital-computer determina­
tions of I, he found that the three approxima­
tions employed in evaluating the integral in (18) 
introduce an error of only about 1% compared 
with the "exact" value when G was taken as 200 
for the case illustrated in Fig. 3. If, to give the 
model a slightly gre<~.ter degree cA rt>a!ity, we· 
shifted G from 200 down to say g* + 1 .- 59 mole­
cules, the computer results revealed that the 
estimate of I would increase by a mere factor of 
1.6,. an utterly inconsequential variation of I in 
view of the fact that I changes by many orders 
of magnitudes as we make rather small varia­
ti'ons in S itself. J ndeed, the exercise of examin­
ing that point with the aid of the computer data 
called attention to the fact that one could have 
sensed directly from the geometric meaning of 
the modified integral of .(21) that shifting G 
from infinity down tog* would yield a reduction 
of I by a factor of 2·.0 under the approximations 
leading to (21). The difference between the 
"exact" reduction factor of 1.6 and the theo­
retical estimate of 2.0 stems from the slope· of 
the gf curve of Fig. 3. Because of that slope, 
rather more than half of the "exact" !-integral 
(!-sum to be precise) lies on the low side of g*, 
so reducing G from infinity to· g* does not pro­
duce quite as much as a doubling of I. 

That I rises as G is lowered is best understood 
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TABLE II. Values of I and n• for various S. 

s 2 3 4 5 6 7 8 

5 2X10-" 
lXlO_,, 2 xto-• 

2Xl07 

0.6 
3Xl011 

8Xl01 
lXIO" 
3>-.106 

4Xl0" 
8Xl07 

by analogy with the two-point heat-conduction 
problem : For fixed boundary conditions, reduc­
ing the thickness of the slab raises the steady­
state heat flux; and similarly for I here .. That 
we· get no more than a doubling of I for such 
targe G changes serves to increase one's con­
fidence in the physical meaning of the model 
employed. If we found the theoretical estimates 
of I to be strongly sensitive to where we picked 
that g =G for which fa was assumed to vanish 
we would be much more dubious of the usability 
of our results. 

To display the marked variations of I that 
attend S variations within the experimental 
range encountered in cloud chamber expansions 
and in many other condensati6n phenomena, 
the values of Table J 1 were computed for water 
vapor at 0°C, using (23). Also shown for refer­
ence are values of n* from (2). and (4). Because 
of considerations of sensitive times of cloud 
chambers or transit times through condensation 
shocks, it becomes slightly more meaningful to 
deal with the reciprocal of I, which constitutes 
an "average time between nucleation events in 
unit volume." Using values from Table Jl, one 
finds that at S= 2 (200% relative humidity, in 
meteorological phraseology) one would have· to 
wait 1083 sec for a single supercritical embryo to 
form in one cubic centimeter of water vapor at 
0°C. This is at least 10110 times the total age of 
the earth, which is a way of saying that homo­
geneous nucleation is essentially impossible at 
such "low" degrees of supersaturation. For S= J 
the waiting time is still a discouraging 2 X lOll 
years. 1 f we try to trade volume· for time, we 
find that a sphere of vapor at S= 2 that enclosed 
our entire galaxy (i.e., a sphere of radius SO 000 
light years) would undergo a homogeneous nu­
cleation event somewhere within its vast extent 
only once every 20 million years! Even at S=3, 
a vapor sphere of radius 1 km exhibits formation 
of one supercritical embryo only once each half­
hour, according to (23). 

But, by virtue of the rapid reduction in height. 

of the activation energy barrier with rising S, 
we find that raising S to 4 has reduced the 
waiting time to 0.2 sec for a system comprising 
only 1 em~ of vapor. This is getdng us to· the 
threshold of observable droplet formation in 
systems of laboratory size having commonly en­
countered sensitive times. But it is not until we 
go slightly above S=4 that we could count on 
seeing an observable concentration of drops in 
a chamber of typical order of sensitive-time (ten 
milliseconds) in the face of light-scattering prob­
lems that tend to make it doubtful whether 
droplet concentrations of less than 100 to 1000 
cm-3 can be readily detected.3 

Because it is in the very nature of nucleation 
that it is an irreversible process that need occur 
only once to "seed" an entire system, it may be 
well to point out that expansion cloud chambers 
actually present slightly different conditions than 
those assumed in Part f and most of Part J I of 
this discussion. Nonadiabaticity of the chamber 
causes the temperature to rise and hence S to 
fall in a manner not related to droplet growth 
itselt In a sense,. this peculiarity makes the un­
baianced steady-state model with the Szilard 
boundary condition all the more realistic when 
applied to such chambers, for our entire concern 
in the cloud chamber problem is to get a moder­
ate rate of production of supercritical embryos. 
from a quasi-steady-state system in the time 
interval between the transient time of approach 
to the fu distribution and the time of deteriora­
tiotl of adiabatic conditions due to conduction 
from the walls-. (We do not, however, here permit 
action of the very ions whose heterogeneous 
nucleating effect is so rndispensable in the most 
common application of expansion chambers in 
physics, so our model must not be misapplied to 
that case. See Mason 13 for a brief discussion of 
the role of ions as well as for extensive discussion 
of the type of heterogeneous nucleation impor­
tant in cloud formation under natural condi­
tions in the atmosphere.) 

" See reference· 3.,. p. 22. 
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VI. SUMMARY 

By blending thcrmod.ynami~ cons~dcrat~ons 
discussed in Part J with kinetiC cons1derat1ons 
elaborated in Part 11,. students of homogeneous 
nucleation theory have obtained a relationship, 
Eq. (23), permitting rough prediction of the rate 
I at which supercritical embryos are formed per 
unit volume and per unit time in vapor super­
saturated to any specified level S . The thermo­
dynamic content of the theory provides quanti­
tative specification of the opposing influence of 
surface-free-energy increases and bulk-free-en­
ergy decreases. as fluctuation processes inter­
mittently build up and destroy embryos of 
various sizes. The kinetic considerations inter­
pret the same struggle in molecular-kineti.c 
terms. Through use of a steady-state approxi­
mation to actual nucleation processes, and above 
all through use of the-·mathematical device. of 
introducting the steady-state embryo populatw.n 
distribution function in writing Eq. (l6}, 1t 
becomes possible to derive the quantitative rate 
relation (23) . 

That Eq. (23) describes a nucleation rate I 
that really depends upon fluctuation processes in 
the vapor, tends to be rather well concealed in 
the simple specifications of the steady-state 
model employed, so it is well, in summary, to 
stress that the actual maintenance of the· em­
bryo population is a very lively affair describable 
only in terms of fluctuations, as embryos gain 
and lose molecules in rapid sequence. Those fluc­
tuations, considered with reference to the state 
in which all the vapor· molecules exist unat­
tached, as monomers, quickly build up a sta­
tistically nearly steady population of clusters of 
molecules, or embryos, almost satisfying a dis­
tribution of the Boltzmann form, Eq. (4) . The 
latter distribution is seen from Table ll to be 
such that for, say S=4, n*=2XlQ-8 em-•, 
whereas the actual number· of embryos of nearly 

critical size, //', is even less than n*. That such 
minute densities of the larger embryos serves 
for maintenance of a current of magnitude I= 5 
em-a sec-' in vapor of that supersaturation, 
documents the lively, fluctuatory nature of the 
growth and decay processes involved. For to 
say that fg * is less than 2 X 10-s cm-8 is equi­
valent to saying that embryos of that size have 
such transitory existence that one is p11esent in 
a cubic centimeter of the vapor only about a 
billionth of the time. But despite this rarity, 
they do form and occasionally grow to size g*-:­
i'ndeed, once· every fifth of a second per cub1c 
centimeter according to Table II. Then, if ad­
verse probabilities do not quickly enter, these 
g*'-mers have a good chance of becoming super­
critical and hence of growing spontaneously, both 
in the thermodynamic and the kinetic· sense. 
Then, homogeneous nucleation has been achieved . 

The theory summarized here would be very 
useful even if it did no more than call attention 
to the principal features of the thermodynamic 
and kinetic aspects of the peculiar process of 
homogeneous nucleation. However, experimen­
tal observations actually stand in tolerably good 
agreement with the predictions of the theory. 
As noted above,. detectable production of drop­
lets in laboratory-type expansion systems is pre­
dicted by (23)' as requiring a value of S in the 
neighborhood of 5, and values ranging chiefly 
from about 4.5 to about 7 have been obtained 
in a variety of experiments.• When it is noted 
first that u appears cubed in an exponential in 
our /-equation and second, that the possibility 
of still poorly understood size dependence of u 
must be admitted, this degree of correspondence 
between theory and experiment should be re­
garded as indicating that (23) and the theory 
upon which it rests are probably fairly realistic 
description of the way in which real systems 
get over the free-energy activation barrier to 
phase transition. 




