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A technique for determining the orbital element set of a

sunlight-illuminated object detected by an overhead platform

(when passing through the sensor's field of view) is devel-

oped. The technique uses a Gauss orbit determination tech-

nique to find an initial target state estimate and then the

estimate is refined via a batch weighted least squares estima-

tion routine. A six element state vector consisting of three

position and three velocity components describe the state at

epoch. It was found that the Gaussian method produced rea-

sonable initial orbits when the data bias was sufficiently

zero. Each analyst-supplied slant range fit the data equally

well, indicating that orbit determination is impossible with

Sa sixky1e set of data. A unique series of events where the

3 same object was tracked four consecutive days was fit using

the developed algorithm, producing favorable results. The re-

sults of two single data set events and one multiple collec-

tion events are presented.

vi
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Orbit Determination of Sunlight-Illuminated Objects

Detected by Overhead Platforms

I. Introduction

3 ObJective and Scope

Due to the multitude of objects in the geostationary

3 belt, overhead platforms are being saturated by reflected

sunlight from orbiting objects passing through the sensors'

field of view. These objects, known as fastwalkers, are

creating a suspicion that some uncatalogued objects may exist

or are being cross-tagged within the data base. The North

American Aerospace Defense Command (NORAD) tasked the Foreign

Technology Division, Flight Performance Division (FTD/SQDF)

to analyze these 15 to 30 minute data tracks and determine the

element set, identifying the object.

The objective of this thesis is twofold: to determine the

feasibility of determining the element set of an orbiting

object from space-based metric data and if so, perform a

U commonality/occurrence frequency study of a year's worth of

3 collected data. The project can be expanded to warn the

sensor operator when the next occurrence will be so that he

3 can take preventative measures to protect the sensor from

damaging cell over-saturation.

* 1



In order to start the analysis, a few underlying assump-

tions must be made. First, the sensor ephemerides are known

exactly, since this is the best true baseline information

available. Also, sensor location is a type of Q-parameter,

where Q-parameters are defined by Day as those parameters

which effect the observations but, for some reason, cannot be

estimated (5:3-1). Other examples of Q-parameters are atmo-

spheric density. data biases, and the like. P-parameters, on

the other hand, are those parameters which can be estimated

from the given data.

1 Secondly, the objects (targets) are assumed to be non-

thrusting bodies within 1000 km from the sensor since the col-

3 lected data tracks can be as long as 30 minutes, implying that

the object's orbital speed is nearly the same as the sensor's

orbital speed. This assumption along with the fact that

* orbital perturbations will have no visible effect on the

target during the span of the data track, the two body equa-

3 tions of motion will be sufficient to estimate the orbital

element set.

The simulated data for this project were generated by the

3 Modularized Vehicle Simulation/Trajectory Reconstruction

Program (MVS/TRP), a batch weighted least squares estimator

originally developed to validate the guidance equations of

various space boosters. The data were generated with 1-a

Gaussian white noise at one point every ten seconds.

* 2



Table I Description of Simulated Test Case Data

Data Rate: ipt/10 sec

Nominal 1-a Data Errors

Azimuth: 3.5 X 10" Elevation: 4.3 X 10-'

Since the fastwalker data base goes back as far as 1972,

it is safe to assume that the problem has been in existence

since then. It is most prevalent with a certain ballistic

* missile early warning satellite system located at various

geostationary locations. Wong in his paper perfor-ed his

analysis using various intensity models and a least squares

estimator (MVS/TRP) to find that there is a family of least

squares solutions in r which satisfy the collected azimuth and

elevation data (21:23-25). Little was done to resolve this

family into a single possible fastwalker, hence his conclusion

was that the problem was unsolvable.

Some undocumented simulations were performed in the Space

Surveillance Center iithin the NORAD Cheyenne Mountain Complex

where the sensor was boosted into a higher orbit and then

circularized 500 km above its original position. Then based

on the viewing angle a collection of other satellites in its

I 3



field of view were listed at a particular epoch time. This

proved to be futile in singling out one particular satellite

as the fastwalker. Other than the above mentioned instances,

no other work has been performed on fastwalker analysis.

Since pure angular data is given along with the sensor

ephemeris over the data span, the Gauss orbit determination

method will be used to determine an intial orbit. The initial

target (fastwalker) state vector can then be refined with a

3 batch weighted least squares estimator to further update the

orbit.

3 The ephemeris is reported in latitude, longitude, alti-

tude and time since no velocity information is required to fit

the data (i.e. the data is also position related. No doppler

3 or other velocity related effects need to be taken into ac-

count to correct the data model). However, an accurate veloc-

m ity component of the sensor state vector must be determined

if a six element state vector will be propagated over a few

3 days.

m Assuming the first ephemeris position data point is

exact, the remainder of the position ephemeris can be fit

3 using a least squares algorithm. The first difference is an

excellent first guess to the velocity required to "hit" all

I of the remaining position ephemeris points. Once converged,

34
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the sensor state vector will be the best possible estimate

given the data at hand.

The next step is to refine the derived state vector from

the Gauss algorithm using a least squares estimator. Assuming

the Gauss-derived estimate is reasonable, the target vector

can be improved up to the error of the data. The 1-a error

figures of merit from the sensor specifications are used as

an input into the program. These inputs form the data

weighting matrix required by the least squares algorithm to

normalize the data entries (see p. 37).

With the fastwalker orbit now defined, it can be propa-

gated forward to determine the next encounte' with another

sensor in this or another constellation. This is easily done

with the Air Force Jet Propulsion Laboratory's Long Term Orbit

Predictor (LOP). The accuracy of this predictor has been

proven with simulations matching probe flight and highly

eccentric orbit trajectories.

5



3 II. Orbit Generation Equations and Methods

U This chapter presents the equations necessary to accu-

3 rately model the motion of an orbiting object over short and

long periods of time. This includes the differential equa-

tions of motion, transformation from an inertial state vector

to classical orbital elements. Aiso included are the trans-

formation from the sensor coordinate system to the inertial

coordinate frame, which is the computational coordinate sys-

tem. These transformations will be necessary for the weighted

least squares (also known as differential correction) process

where the observed measurements are compared to the assumed

or estimated measurements.

Coordinate Systems and Transformations

3 Many different coordinate systems are quite useful for

expressing the orbit of an artificial satellite. Two major

3 coordinate systems, the sensor coordinate frame and the iner-

tial coordinate frame will be described here.

The computational coordinate system for this algorithm,

3I the frame in which the equations of motion are expressed and

integrated, is the Earth Centered Inertial, or ECI coordinate

3I system shown in Figure 1, p. 7. The origin of this frame ic

at the center of the ellipsoidal earth model; the X-Y plane

II is the equatorial plane of the earth and the Z-axis is coinci-

6
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Ficure 1 Fastwalker Problem Geometry

dent with the earth's axis of rotation. This coordinate

system is fixed in inertial space with X pointing toward the

first point of Ares at some arbitrarily chosen time to. For

this program, t. is the midpoint of the data set for the ini-

tial estimate of the state vector and the time of the first

data point for the WLS estimation process.

Two latitude types are normally associated with an ellip-

soidal earth model -- the geocentric and geodetic latitudes

(see Figure 2, p. 9). The geocentric latitude is defined as

the angle between the equatorial plane and the vector from

7



the center of the earth to the satellite subpoint. Geodetic

latitude on the other hand is the angle between the equatorial

plane and the line perpendicular to the subpoint tangent

(local horizontal). The two are related by (1:97)

tan 4p* = (a/b)2 tan %o (2.1)

where lp is the geocentric latitude, ;p* is the yeoditic lati-

tude and a and b are the earth's semimajor and semiminor axes

respectively. Geocentric latitude is used for all computa-

tions. If the latitudes are input as geodetic, they are

3 converted to geocentric.

The other coordinate system is the sensor-fixed system

3 where the x-axis is pointing toward the origin of the ECI

frame; the y-axis is parallel with the equatorial plane of

the earth and the z-axis forms a right-handed coordinate

3 system where x X y = z (upper case letters denote the iner-

tial frame, lower case letters denote sensor frame).

3 Within the sensor frame, the target is measured in azi-

muth and elevation. Azimuth is measured in the detector plane

* clockwise from "north"; elevation is measured up from the

3 nadir (x-axis) direction (see Figure 3, p. 11). Both can be

expressed in the ECI frame

RI px + R, py + R, p,

cos (El) - (2.2)
R p

I 8
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Local Vertical

6 Eccentricity: 0.08182

V Geocentric Latitude

6 . k . Geodetic Latitude

Figure 2 Ellipsoidal Earth Model

sin A
tan (Az) = (2.3)

cos A

I sin A = R (R. po - R, p.) (2.4)

COS A = p Z (R,1 + R,2 ) - R, (R. p. + R, PY) (2.5)

where R,, R, and R, are the inertial sensor vector elements and

I pM , pf, and p, are the inertial slant range vector elements.

Projecting the range unit vector upon the sensor coordinate

frame produces the direction cosines L,, Lv, and L,, where

I,= cos az (2.6)

I 9
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Figue 3 Fastwalker Sensor Geometry-

I
I

I .=-sin el s in az (2.7)

L.=sin el cos az. (2.8)

IA bias and scale factor is added to each azimuth and elevation

calculation to account for other metric data formats.

I 10
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The two coordinate systems are related by two rotations.

The first rotation is about the sensor y-axis by the latitude

and then about the sensor z-axis by the local hour angle.

Mathematically,

P=L cos a cos B sin a -cos a sin B

Pyl = -sin a cos B cos a sin a sin a P,.S (2.9)

|p,it sin B 0 cos a p,,

I where

p~j, etc. - inertial frame slant range vector elements

I p,, etc. = sensor frame slant range vector elements

a = -local hour angle - -[ 89, + w.(t+to) + A,

9,.- Greenwich hour angle at midnight

I, - earth's rotation rate

t+t. - time since midnight

I- A, = sensor longitude

i =-. -,sensor latitude.

� Geonotential and Gravity Determination

Assuming a non-thrusting satellite above the earth's

3 atmosphere, the only significant force acting on the body over

a data span is gravity. Lillard in his thesis assumes negli-

gible longitude dependence, hence the earth's geopotential

3 becomes (16:18)

I!1
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U = p/r ( 1 - X: J. (a./r)I% P,(sin(,p)) ], (2.10)

S= Earth's gravitation constant 398600.8 km3/sec 2

r = distance from center of the earth to the satellite

J, = harmonic constants

a. = earth's equatorial radius, 6378.135 km

P, = associated Legendre function

S= geocentric latitude.

This is also known as the zonal potential, which will be quite

sufficient for the initial orbit estimate due to short data

tracks relative to the time for perturbations to take effect.

Hence four expansion terms are adequate. For long term propa-

gation, tesseral and sectoral harmonics and other effects such

as third body effects, solar drag, etc. must be included.

The acceleration due to gravity is derived from the above

potential. Since U is a solution to Laplace's equation, the

gravity g. is simply the gradient of U, or

g. = - V(u). (2.11)

By setting

sin(ip) = z/r

the geopotential and gravitational acceleration can be written

entirely in the computational coordinate system, eliminating

12



the need to transform coordinates. Therefore, the gravita-

tional acceleration becomes

_ •X ao 3 ez as 5 z2
_X" -_ . 1 + Ja -- - 1 -5 -]+ J, -- 3 -7 -

r' 3 r J 2 [z r' r 2 rz

II 4
a, 5 2 a

I + J" [- 3 + 42 - -63 -J} (2.12)

IY
YI1 (2.13)x

4Z a.o

.3
a. 3z Za 35 Z'+ J3 - - -I + i0
r 2r r[ 3 r4

a. 5 za Z4
+ J" - - -15 + 70 -- - 63 -- (2.14)

r 8 r a r'

where (') denotes the second derivative with respect to time.

These equations of motion are integrated using a Runge-Kutta-

Nystrom numerical integrator to propagate the state along in

time.

13



Orbital Element Generation

For this specific problem, Escobal states the Gaussian

method of orbit determination is "second to none" when the

time between the observations is small (6:272). The Laplace

method was found to be unsuitable since the direction cosine

rates and accelerations were small enough to produce near-

singular matrices.

The Gauss method hinges on the fact that only two linear-

ly independent vectors are needed to define the orbit plane,

assuming negligible perturbation effects during the data span.

Therefore a third vector can be written as a linear combina-

tion of the independent vectors. Thus it is possible to

determine a set of constants a, b, and c not all zero such

that

ar, + br, + cr, = 0. (2.15)

Arbitrarily choosing r, as the dependent vector and redefining

I constants to c, and c,

r 2 = cr, + cr,. (2.16)

Crossing r, with r, and r, three parallel vectors perpen-

dicular to the orbit plane are found whereby

r, X r, = rlr~sin 2A,,W

r, X r, = r~r,sin v, = 2A,,W (2.17)

r, X r, = rr,sin , 2A,,W

14



I
where A,, are the areas of the triangles formed by the respec-

tive radius vectors and v&, is the angle between the respective

I vectors.

Substituting,

A,,W = CAAW , A2,W = C1A,,W

or

A,, A,,
C• = , C, = . (2.18)

A13  AI,

The Gauss method only requires observations at three

different times. Since data sets of more than three observa-

tions are available, the set to be analyzed must be "averaged"

in some sense (in this case, time). The number of data points

was divided into three batches and the average time of each

I batch was used as the batch times. An n"-order least squares

polynomial (determined by the using analyst) is fit to each

data coordinate to smooth through the noise. Then based upon

the resulting equation, ECI direction cosines and sensor

I location for each batch time can be calculated and stored.

The above area ratios can be expressed as a function of

time. For instance,

I A,, = 1/2W [r, X rj (2.19)

I
I 1

I



I
along with r, expressed in terms of r, in f and g series (see

p. 28 for derivation), i.e.

r, 1- f,r, + g~r', (2.20)I
Substituting,

I A1 = 1/2W ' [(fr, + g~r',)] X r,] = -hg1 /2 (2.21)

I where h is the orbital angular momentum. Similarly A,, can be

expressed as

A,, = 1/2W (f,r, + g,r',)] X r,] = -hg,/2 (2.22)

Note that there a common area A,, where

A,, = 1/2W [(f r, + g~r',)] X (f,r, + g,r'.)] (2.23)

I or

SA,, = 1/2h (f g,-fg,) (2.24)

In terms of the f and g expansions, the coefficients c, and c,

are

CI =
f~g,-f3g1

(2.25)

f 1g,-fg 1

I

I
I



Truncating the f and q series after the second term, c, and c,

can be approximated by

7, Iu,
C, •-- 1 +- (rti - a

T13 6

(2.26)

C, = -- 1j 1 + 1(2 7 x'l •)l

C3 +T'3 6

where u, = p/r'. By allowing

7" T3

=- B = (7, ' -

A,= B= (r -7) a
TO, 6713

c, = A, + Bu, and c, = A, + B,u,, where c. = -1.

The vector equation r, = c ,r, + c,r, can be modified using

the basic relation r = p - R to produce the equation

CIp, + cp, + c,p, = cR, + c.R, + cR,.

The vector p, can be written as a product of the direction

cosine matrix La and magnitude p. The resulting equation

takes the form

c,p,L, + c,pL, + c,pL, G (2.27)

17



where G = cAR, + cR3, + cR,. Thus the previous equation can be

expressed in matrix form as

I4y 2 ~ [1 C32 1  L G2J (2.28)
"L, 2 L 3• CG3

It is possible to form the inverse of the matrix L.,

solving for the cp, matrix. If aij denotes the individual

elements of n' and vectors

A = (A,, -1, A,]T , B = [ B, 0, B,]] , X = (X,, X, X,],

Y = [Y,, Y2 , Y,] T  , and Z = [Z,, Z,, Zj]

then the slant range p, for each batch time is

A,' + B,'u 2

A, + Bu,

p, = A," + B2*u2  (2.29)

A,' + B.'u,
P3 A] + B,U,

where

3 A, = (a,,A'X + a,,A'Y + a,,AZ)

Bl" = (a,,B'X + a.2B'Y + alB-Z)

m Az = -(a,2 A'X + a, 2AY + a,,AZ)

3 B2 = -(a,2 BX + a,,BY + a2,BZ)

A,* = (a,.AX + a,,AY + a,,AZ)

18



I
jB," = (a,,B'X + aB'Y + aB'Z).

To determine the magnitude of the target's radius vector

Sanother equation is required. Another linearly independent

relation can be derived by dotting the vector equation relat-

ing target position to sensor position into itself, producing

Ir 2  p - 2pLa R, + Rz . (2.30)

The scalar products L*R are known from the collected angular

observations and sensor location. At the center batch time

t,, let

C, = -2(XL,, + YLY2 + Z2L, 2).

Substituting p, and C, into the resultant dot product equation

r,' - (C2A," + A,"z + R,2 )r,' - p(C2 B2" + 2A,'B,')r,`)

I - pB 2*2 = 0. (2.31)

One is not assured of a real root since this equation is

of even order. By factoring this equation, all possible

combinations of reasonable roots can be explored by the ana-

lyst. The classical Newton-Raphson root finding technique

finds only one root based upon an initial guess. Hence the

former method was chosen.

Velocity is found by first taking a Taylor series expan-

sion of r,, i.e.,

19
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I

r = -r,", J=1,3 (2.32)

where r,, = (73 - T'), 7T being the epoch time. When the expan-

sion is written for batch times 1 and 3, time 2 being epoch

rl r, r IV

r, - r. = + ri, - - T12 - + 711 - + 0('r1 ) (2.33)
2 6 24

r, of r, 1 I' r v

r, - r, = ,r,,r' + 7's, - + T,, - + 1,, -- + O(r,,) (2.34)S2 6 24

Multiplying equation (2.33) by r,,, equation (2.34) by r,, and

adding produces an equation void of r,'. Now multiplying the

equation (2.33) by -r,,2 and equation (2.34) by T"2 and adding

produces an equation void of r,". Differentiating each of

these new expressions yields

,,r, - 7 3r," + 7,,r," - v1213,v1  1/2 rlv + O(rv) (2.35)

_ 3r 23 ro + (7r,,' - r12)r.t + T12 t r," w rij,,r, rIII +

0(r m ) . (2.36)

Assuming the O(r") terms can be ignored, one can solve for rt2

and r," and substituting the respective derivatives into the

equation void of r," derived above generates

20



1 3~3~)r 2' 2f r, + (+t,,' - 7)r," +,r, -

12 -T,,'r1 " + (r,,' - T1 3a)r." + 1, 2 r,"]. (2.37)
12

Substituting the two-body equation of motion into the second

derivative terms and allowing

12 T 'r

H, s _G,
12 'r 13

H, - H, G, G, G,

then

Hi
id m G* + , i-,2,3 (2.38)r3

and

I V - -d~r, + dXr, + dr,. (2.39)

At this point, the orbit is considered determined since

both r and v are known.

I
I
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Orbital Element Sets

Orbital elements are sets of six or more parameters which

describe an orbit, whether be in size, shape, orientation,

energy, momentum, etc. Of the three main types -- classical,

equinoctial, and Delaunay -- the equinoctial element set

provides the best accuracy since there are no singularities

as there are in the classical and Delaunay sets, except at

i=180°. The drawback, however, is that the equinoctial set is

rather abstract compared to the classical set.

The equinoctial elements in terms of the classical ele-

ment set for a direct orbit are:

a a A Ma + W + 1

h = e sin (w + n) k = e cos (w + n) (2.40)

p = tan (i/2) sin n q = tan (i/2) cos n.

Deriving these elements in terms of the state vector re-

quires a little more knowledge of the geometry involved.

Cefola in Figure 4 (p. 23) shows graphically what the equinoc-

tial set represents (4:2). The orientation of the coordinate

system is defined by an angle equal to the longitude of the

ascending node, n, and the unit vector w perpendicular to the

orbit plane. Unit vector f is in the orbit plane specified

by i/2 down from Ares and an angle A down from the node.

Vectcr g forms the right-handed triad such that f X g = w.

22
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Figure 4 Equinoctial Coordinate Frame

I

I An orbit's shape is defined by the elements h and k,

which are the components of the eccentricity vector projected

upon the f and g vectors. The element A, pinpoints the posi-

tion of the satellite on the orbit since it is the sum of the

three angles measured in the plane. The final two elements,

p and q, are the most abstract. In short, these elements

merely characterize the orientation of the orbit. Both are

required in the rotation matrix to transform the inertial

frame to the equinoctial frame (4:3).
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For the direct orbit case, the unit vectors can be mathe-

matically expressed as

f 12pq (2.41)

1 + p2 +q' -2p

1 2pq
+- I- qJ (2.42)1 + p 2 +q2 2q

1 r 2pV -2q (2.43)i + p 2 +q' 1 - p - q'

Transformation from an ECI State Vector to Equinoctial Ele-

mgn a

The transformation from the state vector to the equinoc-

tial elements is a fairly straight forward once the coordinate

frame is understood. An orbit's specific energy directly

produces the semimajor axis since

a = . . . . .- (2.44)
2 2 r .

The eccentricity vector is given by

e =- v' - "] r - (r v) v (2.45)
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Another way to express the unit normal to the orbit plane is

through the angular momentum, r X v. Hence

r Xv
* = . (2.46)

Ir X vi

However, this expression has the same exact meaning as the

previous w equation in terms of p and q. Therefore, p and q

are

W, Sy
p = q = (2.47)

1+V, 1+W,

and the equinoctial elements h and k are merely

h - - g, k - e " f. (2.48)

The remaining element to derive is the mean longitude,

A,. First compute the position coordinates X and Y relative

to the orbital frame f-g-w by

X -x fr,Y - x g. (2.49)

Then compute

(1 - kW)X - hkSY
cos F - k +

a(l - h' -k2)l/

(2.50)
(1 - k'S)Y - hkBX

sin F h +
a(l - hW - )1/2
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I
where the variable B is

I 8=-

1 + (1 -h - k')" 2 .I
Then the mean longitude is given by

x0 = F - k sin F + h cos F. (2.51)I
These equations are mainly used to compute the numerical

partials for the Jacobian transforming the ECI state vector

covariance matrix to the equinoctial element covariance ma-

I trix.

2
I
I
U
I
I
I
I

I 2

I



III. ProDagation Methods

In order to calculate the sensor and target state vectors

at times other than the epoch, the state must be propagated

via some numerical technique. There are various methods to

propagate the state along in time so that the calculated mea-

surements can be compared to the actual observations. For

this thesis, however, three main methods are used, each having

a particular purpose. Two methods are used to propagate the

state -- the 4"'-Order Runge-Kutta-Nystrom numerical integrator

and f and g series expansions. A state transition matrix is

used to propagate the covariance matrix, which consists of

partial derivatives of the present state with respect to the

estimated epoch state. The covariance matrix will be examined

in the next chapter. Each propagation method will be briefly

described.

4th Order Runge-Kutta-Nystrom (RKN) Numerical Integrator

The RKN integrator is a closed form predictor-corrector

numerical integrator specifically suited for 2,, order differ-

ential equations. One of the novelties of this integrator is

that the position and velocity at time t+at are direct out-

puts, so only one integration pass is required per time step.

Battin does an excellent job of deriving the RKN inte-

grator in minute detail (2:577). However, Kreysig describes
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the method in terms of a scalar function which is easier to

follow (15:1078).

The RKN numerical integrator algorithm is

x = x, + hyo + h 2 (k, + 2k,)/6 + 0(h')
(3.1)

y = y0 + h(k• + 4ký + k,)/6 + 0(h')

where

k= f(to, x.)

, = f(t 0 + h/2, x. + hy 0 /2, h'k/8)

k2= f(t 0 + h, x. + hyo, hI1/2)

This algorithm is best suited for accurate propagation

of a state vector in an estimation routine since a precise

state estimate is required at each data point. In addition,

other effects can be included in the function f(t,x,y) to

exactly model the physics of the problem.

F and G Series

The f and g series expansions are series solutions of the

two-body equation of motion. In other words, any position r

can be expressed in terms of the epoch position r 0 and the

time r from the epoch to the time desired. Mathematically,

any function can be expressed as an infinite series, i.e.
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r =Z r(n) (3.2)
Zn!

which is the form of a Taylor Series about zero (also known

as a MacLaurin Series.)

Assuming that the above series is a solution, differen-

tiate the two-body equation of motion three times (making this

expansion of fifth-order) holding the epoch time to constant

and substituting r," = uro (u=IL/r') wherever r," appears. The

resulting equations are

r, 11 - -u'r0 -ur 0 '

rov= (-u" + u')r, - 2u'ro' (3.3)

rI= (-u'"Z + 4uu')r 0 - (3u" - u')ro'.

Substituting these expressions into the Taylor series produces

the familiar equation

r = fr, + gro', (3.4)

where

f n i - 1/2 ur' - 1/6 u'r' - 1/24 (u" - u')r' - 1/120(u.'

- 4uu')TS (3.5a)

I and
g a r - 1/6 ur' - 1/12 u'r' - 1/120(3u" - u 2 )rs. (3.5b)
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In this form the f and g expressions are useless from a

practical point of view since higher order derivatives of u

are not known. Escobal states Lagrange proceeds as follows

(6:109). Introduce the new variables p and q such that

d(r') d2 (r')
rp - r2q * (3.6)

dT dr'

where

rr' r - r' r'3 - r 2u

r2 r2  ra

so,

3p dr 3gL d(r 3 )
= - - - = - -

r' di 2rs dr

1 d'(r 2 ) 1 d(r') dr
p, = (3.7)

2r' dr' r' dr d7

1 d'(r 2 ) dr 1 d'(r 2 )

r 3 dr2  dT r3 dr'

which become by introduction of the previously defined p and

q

u= -3up

p= q - p' (3.8)

q= -(up + 2pq).
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Differentiating u',

U" = -3(un' + u'p),

which becomes

UU" = -3[u(q - 2p 2 ) - 3up2] (3.9)

via substituting p and q. This process can be repeated to

eliminate u', p' and q' from each derivative. Therefore, the

5V order f and g series expansions are

I f = 1 - 1/2 UT2 + 1/2 upr' + 1/24 (3uq - 15up' + u 2)i' +

1/8 (7up' - 3upq - u'p),r' (3.10)

g = 7 - 1/6 UT' + 1/4 upr' + 1/120 (9uq - 45up2 + u')r'.

(3.11)

These expressions are used to obtain a quick initial

state estimate at the beginning of the data track. Since the

series is truncated at O(,'), this method is definitely not

Ssuited for long term propagation. As long as the initial

3 target state estimate is "good", the least squares estimator

can properly refine it.
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State Transition Matrix

In order to create the partial derivative matrix required

for the least squares process, the partial derivatives of Az,

and El, must be taken with respect to the state vector at the

epoch time. Partial derivatives of the i" data point can be

related to the epoch state vector by the state transition

matrix, *(ti. 1 ,tL). This matrix is derived in many control

theory texts, but its use for our purposes Wiesel derives it

in terms of the required dynamical equations (18:26). In

short, the state transition matrix demonstrates how the state

changes in time but in matrix format.

The state transition matrix is derived from the solution

of the matrix differential equation

-- *(t,to) = A.(t) 0(t,to) (3.12)
dt

where in this case 0 is more appropriately called the equa-

tions of variation since it contains the effects of all tra-

jectories near the reference trajectory. In other words, it

is not linearized. If one assumes that the changes in each

element is negligible, 0 is a constant matrix. The matrix

also takes on some interesting properties:

0 (t,t) = I (3.13a)

OM(t,) = 0(t,,t') 4(t 1 ,to) (3.13b)

0(t,to) = 0(to 1 t)". (3.13c)
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The partial derivative matrix of the data with respect

to the state vector at t, can be related to the epoch state

vector x, by the chain rule (equation 3.13b). Let H1 be the

partial derivative comparing the changes in the data to the

state elements at time t,. Then H1- is related to the epoch

vector by

HI-I2o = H-I 4 (t 1 ,t 1 .1 ) * (t_ 1 ,t1 .3 ) ... *(t,,t 1 ) * (tl,t.) (3.14)

where H14-. is the partial derivative matrix of the data at

time t, with respect to the epoch state vector x. which is

required for use in the least squares estimator.
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IV. Refining the Initial State EstimatJ

The main method of refining the state vector derived from

the Gauss orbit method is least squares. The method of least

squares, developed by Gauss for his astronomical studies in

1795, is concerned with estimating the values of a set of

parameters of a measurement model, which relates the measure-

ments to the parameters to be estimated (16:35). These esti-

mated measurements are then compared to a set observations to

produce residuals. The sum-squared residuals are minimized.

3 The set of estimates which produces this minimum is said to

be optimal in a least-squares sense (i.e. the azimuth and

elevation data are the observations). The initial state esti-

mate produces a corresponding set of observations which are

subtracted from the measured observations to produce residu-
I als.

The parameters to estimate are called the state variables

at some fixed time t, known as the epoch time. If we let the

vector z, represent the set of measured azimuth and elevation

at time t,, the observation model may be represented as

z - G1(x.,to) + , i -- 1,2,...,n (4.1)

where

n = total number of measurement times

x- the initial estimate of the state vector at epoch
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G1- the vector of functions relating the state vector to

the observations

el - the error vector of the observations at time t,.

Therefore, the observations can be notationally expressed as

Az,,, Az, + eg i
(4.2)

Elm t Eli + esI

where

CAI Iel - the it azimuth and elevation measurement error

Az.,, El1. - the i-' measured azimuth and elevation

Az, and El, - the true azimuth and elevation at time t,.

The minimum state vector for an orbiting object is the

six-element vector

X. W (x., YO, z., x.', y.', z.') (4.3)

assuming a high altitude non-perturbed satellite. Perturba-

tions, thrusting and other effects add extra elements. Since

one of the assumptions is the object is non-thrusting and the

data track is small with respect the time it takes for pertur-

bations to take effect, these elements are ignored.

If the observation relations were linear, one could take

any . of them and solve for the unknown parameters, where m

is the number of unknown state elements in the relations,
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However, the observation relations are non-linear which forces

us to expand the relations in an infinite series, truncate and

I then iterate. This is also known as linearization.

A perfect sensor would measure the perfect state x pro-

ducing the exact set of measurements z.. Then the estimated

state can be represented as x = x + 6x. Hence the error

vector c is given by

e = z - z= G(Xo + 6x) - H(X.)

aG
S- 6x (4.4)

ax

Let *. be the estimate of x,. Then the first-order ap-

proximation of the error by expanding the observation rela-

tions in a Taylor series is

IAz,
CAL = Azb i - AzL - - AX + O(Ax 2 ) (4.5)

axo

aEl1Ij = Elobj - Ell - aX + O(ax2 ) (4.6)
ax.

where ax is the difference between the initial state and the

state estimate. Then the partial derivative matrix of the

I observation relation G to the state elements is
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aAz1  aAz1 aAz1
°- 0 0 0

aG ax ay. aZ.
- = (4.7)
ax aEl, aEl, aEl,

--- 0 0 0

When the higher order terms are ignored, the Taylor series

expansion produces a linear set of equations in AX. Now we

can apply the concept of non-linear least squares.

Let e be the 2n X 1 matrix of error elements azimuth and

elevation for each observation time

3= { c l , ,, C, e, ,, ... , I e,,,, )e (4.8)

a G, aG, G, G I
.... (4.9)1ax. axo axo 8Xo

AZob I AzL(x,t,)
El.,- El,(x,to)
A z.,- Az 2 (X,t)IEl,3 - El,(x,to)

b = (4.10)

I-Az i (x,t)
Elob, El (x, to)

With the above matrix definitions, the linearized observation

relations can be rewritten as

=I= )- max. (4.11)
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There are two types of residuals -- azimuth and eleva-

tion. Elevation is normally more accurate than azimuth, so

the least squares process will try "fit" azimuth before it

considers fitting elevation. Therefore weights must be ap-

plied to the data to normalize the residuals (7:48). This way

the least squares process will consider each observation

equally. Also weighting gives us the opportunity to ignore

unwanted or erroneous data.

Assuming that the data is corrupted by Gaussian white

noise (each observation is uncorrellated in time and space

with zero mean), the weighting matrix W is a diagonal matrix

with the weightings on the diagonal. This is not true since

a sensor takes raw measurements and then transforms them into

something which can be understood. Also, if the observations

are measured by a moving sensor they are correlated in time.

However, these effects are generally small and the assumption

is justified (5:5-3).

It is clear when weighting is introduced, the estimate

will be a direct function of the weights. Lillard states the

optimal weighting matrix is the inverse covariance matrix of

the measurement errors (16:43). Considering the above assump-

tions, the weighting matrix is composed of error variances on

the diagonal with the variances of each observation data type

being equal.
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Introducing the 2n X 2n weighting matrix W1 ", the matrix

error equation is

S= W" 2 k - W " 21H A x (4 .12 )

where the w subscript indicates the weighted error equation.

"Squaring" a produces the squared residual matrix

I - (W1 '2 ` - W"'IIAx)l (W"'b - W1 "H-ax) (4.13)

Now taking the partial derivatives with respect to ax and

since we are looking for a minimum, setting it equal to zero

gives the standard weighted least squares difference equation

Ax - (HTWH)-1 H'W]Z 4.43P (4.14)

with P being the covariance matrix associated with the esti-

mate where the diagonal terms are the variances and the off-

diagonal terms are the covariances.

This equation is called a "difference" equation because

it provides an update to the previous state estimate since the

observation equations are non-linear. If they were linear

there would be no need to iterate and the optimal least

squares estimate is just Ax + xo. Nonetheless, the optimal

estimate for the non-linear case is found by continually
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updating the state estimate until some convergence criteria

is reached.

I Statistically,

SP, = E(SX 6x?), (4.15)

where E is the expectation operator. Since the Taylor series

was truncated to first order,

I
6X = %3 6y, (4.16)

where JT is the Jacobian of x with respect to y. Substitut-

ing,

IP. =E(-. 6y (-3 6y)"]

%= E(J3 6y 6y? 7-). (4.17)

Since %7 is a constant matrix, it can be brought outside of

I the expectation operator producing

iP, = 7 E( 6y 6y' ) 7?.

IP. = JT V', .7r. (4.18)

Solving for IPY

I P, = J'* P,'~ (Jr'. (4.19)

Since JT is an orthogonal symmetric matrix, 7J ? J3,I
1Y = JT' 3P. (J7). (4.20)
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Therefore, given the functional relationship between x and y,

any covariance matrix in one space can be transformed into

another space via the above association.

Unobservability

One of the main problems with least squares is that the

initial estimate must be sufficiently "close" to a solution

to ensure convergence. This is due to the fact that the

Taylor series was expanded about a reference orbit and trun-

cated beyond the linear term. The Gauss orbit determination

method produces the initial state estimate for input into the

least squares estimator. This estimate is a three dimensional

estimate, however the data being fit is two-dimensional. In

other words, one can determine the direction to the target

with respect to the sensor, but the data contains no range

information. Thus there will be an unobservable eigenvector

parallel to the slant range vector corresponding to an infi-

nite eigenvalue for P.

In order for an estimate to exist, the matrix H"WH

must be invertible. This is called the observability condi-

tion (19:58). For our case, the zero eigenvalue of P-' pre-

vents inversion of this matrix to form the covariance but

since computers introduce roundoff and 3ther errors we can

invert this ill-conditioned matrix. If this matrix is used
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to find the state estimate the solution will rapidly diverge

due to an uncontrollable &x. To control ax, decompose F'*

into its eigenvalues and determine the contribution of the

unobservable eigenvector into the state update.

Let 6T be the matrix of eigenvectors of P'-, so

T1 = ( , (3 ( , •, 1 }(4.21)

and the decomposed P-' matrix is therefore

jp-' = TrATr'. (4.22)

Iwhere A is the diagonal matrix of eigenvalues A, correspond-

ing to ý,. Taking the least squares equation and bringing the

I covariance matrix to the left hand side

3 A •x = H T WH. (4.23)

3 Substituting the decomposed matrix and premultiplying each

side by T"L produces

SA ^T'rXA = T'HWD. (4.24)

I Letting Ay = 'I''Ax transforms the state space correction

3 vector into the eigenspace spanned by the vectors of TI. Upon

examining A , there will be a zero eigenvalue and the corre-

3 sponding element of ay is its contribution to the correction

vector in the state space. Setting this element of ay to zero

I eliminates this contribution, hence transforming this vector
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back to Ax produces a new correction vector which will produce

convergent updates.

Performing this procedure is not without its drawbacks.

Since the correction contribution along the slant range vector

was nulled, there are many different solutions to the azimuth

and elevation data fit. Hence any reasonable input slant

range will produce random residuals upon convergence though

the slant range derived from the converged solution will not

vary much from the input value.

3 Range Determination

Based on the data alone, the slant range from the sensor

3 to the target cannot be realized since the information con-

tained in the data set is purely direction with respect to the

orbiting platform. The best range estimate one can obtain

given the data is from the Gauss method. Even then the ana-

lyst must know something about the physics of the problem and

3 the geometry involved. However, there is another inherent

piece of information which can be derived from the data -- the

m rate at which the target passes through the field of view.

3 Assuming the platforms and objects are in circular co-

planar orbits, the angular rate at which satellites revolve

3 about the earth is the mean motion, n, in radians per second,

I
*!4
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[= [ - (4.25)
a3

where a is the semimajor axis of the orbit and p is the

Earth's gravitational parameter. Defining w, as the angular

rate of the platform and a, its semimajor axis, the target

angular rate w can be expressed in terms of a variation 6a

away from a, or

W =[ 1 (4.26)
L (a, + 6a)J

The above equation can be rewritten in a binomial series

in terms of the ratio 6a/N

= wZ("2);')~ sap(4.27)

ln-0

where the notation (a), detotes the Pochhammer operatora.

Assuming 6a is much less than a,, the third order series re-

presentation is

WMW,; ( 1 - 3/2a + 15/8a' - 35/16' ) , a = 6a/al. (4.28)

Therefore the angular rate of the target relative to the

sensor is

"The Pochhammer operator (a), = (a)(a+l)(a+2)...(a+n-I).
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I (w - o,) -w ( - 3/2a + 15/8c" - 35/16•'

a = da./a. (4.29)

Since both objects are assumed in circular orbits, the

radial velocity is equal to zero. This makes the velocity

merely the radius times the angular rate in radians per sec-

ond, or v=rw. Substituting the semimajor axis for radius

makes the velocities become

v = W (a, + 6a) , v, = w a. (4.30)

* and the relative inertial target velocity

6v = (v - v,) = a, (w + w,) - 6a

= 6a w, ( - 1/2 + 3/8a - 5/16a' + 35/128a' ),

a = 6a/a,. (4.31)

The target position with respect to the platform is given

by the vector equationI
r = p + R,I

r being the target, R the platform and p the relative position

(slant range) vectors. Since p is measured in the sensor

coordinate frame, the target velocity r' becomesI
r'= R' + p" + w X p (4.32)
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where ' indicates the time derivative. Moving R' to the left

hand side and expanding p into its components,

r' - R' = 6v = p'e, + pB'eq + we, X per. (4.33)

1 The earth subtends approximately 170 at geosynchronous

altitude. A simulation of two coplanar circular orbits and

determing the -elative motion of a lower altitude satellite

with respect to a near-geosynchronous satellite has shown that

within the viewing cone, the sensor relative aspect angle rate

1' is constant. Though B' is constant, the value of 1' varies

with slant range distance.

Assuming p is constant through the field of view, and

since 6a is small, p = 6a, the relative inertial velocity can

be written in terms of tangential components only, or

6v = 6a ( B' + ). (4.34)

This makes the expression

B = •)q { -3/2 + 3/8a - 5/16a' + 35/128a'

a = 6a/aq (4.35)

which can be solved for a since B' is known from the data.

46



IP

I V. Rets

Three events were analyzed with the developed program,

I two of which had single data set collections. The third event

m was quite unique in that there were four consecutive days

worth of data collected on the same object. This multi-day

3 collection was verified by analyzing the intensity profile

history for each collection. Each data set had the identical

I rotation rate, nearly the same intensity level, and started

approximately 72 seconds earlier each successive day pinpoint-

ing 6a. The focal plane traces are shown in Figure 5. For

classification purposes, the single data set events will be

designated Event A and Event B. The multiple event will

* merely be called the multi-day event.

I Event A and B Analysis Results

* By analyzing Events A and B, deriving the slant range

from the angular rate is plausible only when the ratio 6a/aq

is sufficiently large. Figure 6 illustrates the simulated

relative viewing angle from a spaceborne platform of a co-

planar target in a circular orbit. For ranges close to the

sensor (within 1000 km), 8 has constant slope -3/2w, within

the viewing cone produced by the limb of the earth at geo-

synchronous altitude (8.50 or .148353 radian half-an-

gle). Figure 7 shows that for small 6a/a,, B'/w, increases

I linearly with the range ratio p/a, at a rate of .375 to 1
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Etvent

Event B +

I/

Figure 5 Single Data Set Focal Plane Traces

I which was expected from the expansion (realistically, Sa/a,:5

0.024, which is an optimistic figure). This means the sum

I 3/2w, + 8' must lie between -0.008877 and zero to yield a

semi-major axis change of less than 1000 km, implying that
i 8'<0 since the change in semi-major axis, and hence slant

I range must be negative due to the equation's derivation (ex-

pansion of the quantity 6a + a,). These constraints on 5'

I gave rise to another problem.

The constant term in the series equals 1.09079624 X 10'"
I radians per second, which is approaching the data noise level.
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Hence, the random noise on B' easily corrupts the sum

3/2 wQ+ B' producing unreasonable range results since the sum

must be multiplied by 8/3a, (= 112645 km) for a first order

approximation. Therefore, the slant range calculation is

extremely sensitive to data corruption, making this method of

range determination unfeasible. This result is in agreement

with Hrastar who concluded that even with three onboard sen-

sors, small uncertainties in target location produces large

uncertainties in the range (11:3).

The Gauss orbit determination method worked fairly well

for determining an initial orbit and a relationship between

r and v. Some of the derived range solutions were unrealistic

since they produced targets either behind the sensor or too

far away to be detected. Noise was a minimal contributor to

this problem since the data were smoothed via an analyst

supplied nb order least squares polynomial. In fact, chang-

ing the polynomial order produced negligible change in the

computed radius vector through 3rd order.

After fitting the data on these events with an arbitrary

slant range, the mean of the residuals was on the same order

as the standard deviation, indicating a bias existed. This

bias essentially shifted the estimated state vector away from

the nominal solution producing unreasonable target selection

choices.
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Each targets' data set, regardless of its size, spans at

best approximately 3% of its orbit on a single pass since the

target is also near geosynchronous altitude. The slant range,

which can be approximated by a change in semi-major axis

between the target and sensor, is unknown; only the direction

from the sensor at any one time is known given the data. For

both of the single set events, the least observable eigen-

vector was exactly aligned with the direction cosine vector

from the sensor to the target with a near-infinite eigenvalue.

Therefore, each slant range chosen by the analyst will fit the

data equally well. Figure 8 through Figure 11 show the resid-

uals for both Event A and Event B. Table II lists the data

I fit statistics.

The equinoctial element set was computed from the state

vector to avoid the singularities associated with the other

element sets. The state vector covariance matrix was also

transformed to the equinoctial covariance matrix to determine

the uncertainties of each element, with the Jacobian being

computed via numerical partials. Unsurprisingly, all of the

elements with the exception of the semi-major axis were known.

j The single data set equinoctial element covariance matrices

for a given range are shown in the appendix.

Since the sensor position is assumed exactly known, the

smaller the slant range, the smaller the semi-major axis

variance, a.'. Figure 12 shows a higher order growth in the

51



0.0004 -

0

0.0003 -
0 C

0 0002 -

0.0001 - 0 0 0 0

0 0 0 n

-0 
o 0 0

-00002 0 0 0 0 0

0

-0.0003 -4,

0 20 40 60 -30

Date pont

"Figure 8 Event A Azimuth Residuals

3l

Co

00 a 0 a
O 0 0i 0

I G0 O000Q

C,) n l 0

0 C3

-2i,0 0e 9 Ee0 A Elvto Reiulsn

0 0

00 0
0 O0

II
020 4{-, 60 so

i ~c•at Poin"t4

"Figure 9 Event A Elevation Residuals

52



I

I 0 0002

0.0001 0 0 0

0 0 0

0 0 0 0

0. 00001 - 0• Cr 0 a

.00 0 0

O-0000 1o 0 C-5 0 0
0 0

•-0 001 - o o0

- 0-0002 
o

0 20 40 60 80 100 1;0 1-0I ata PCoinMt

Figure 10 Event B Azimuth Residuals

43 0 :L :
2 0 0 0 0

0t 0

- 0 0 0 0 0 0

00
0, 0 06 . 0

I -2°

-0 0500 000
00

S0 0 0 6 0 0 "10 4 0 0

0o 0

-20 0 0Q

_ 0 
IM

• 0 00 0 0 0o
O 0 O0 00 0o

-0 
0

I I

S53
I



Table II Single Data Set Event Converged Statistics

EventI n M
Az: -3.72130E-8 1.38461E-4 1.37496E-4
El: -1.04324E-8 2.77278E-5 2.75345E-5

EMfens
Az: 1.75770E-6 5.25703E-5 5.23875E-4
El: -1.46506E-6 1.67384E-5 1.66801E-4

semi-major axis certainty the further the target is from the

sensor. This makes perfectly good sense since P, =

O(t,,t,)P, 0(t,,t,)T. In fact, from this relation, a.' should

I increase in the order of p' at best since 0 is at most second

order.

Multiple Collection Event

It was quite fortunate that a series of collections on

the same object was located in the data base. The target had

a periodic intensity profile which repeated itself upon each

track, thus ascertaining that it was the same object. Each

profile consisted of a series of specular troughs and valleys

indicating that it was multisurfaced. A rotation rate could

not be derived since the intensity pattern did not repeat over

the duration of the track. Figure 13 shows the composite

focal plane traces.
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m
Knowing the change in track start times from the previous

day would give the analyst an idea of what the target semima-

Sjor axis should be based on the sensor period. For this

event, the sensor had a period of 1436.154 minutes and each

track started approximately 215 seconds earlier each day put-

ting the target 70.5 km away.

Since two body motion was used to propagate both sensor

and target state vectors over three days, the integration step

size had to be decreased a significant amount (approximately

60 second increments) in order to fit the position ephemer-

ides. This led to long analysis runs, but it was imperative

that each succeeding day's sensor ephemerides (given) match

the propagated state vector. Also, each data partial had to

be related back to the epoch time via the chain rule.

-- Using the a-priori slant range value, an initial orbit

was computed from the Gauss algorithm for the first day's

worth of data. A trial and error method was used to find a

I slant range which would "hit" the next day's data. Though any

range would fit data set, only one slant range would fit two

I data sets collected on the same oh ,t. Each latter data set

became easier to fit once the first two data sets were fit.

Different subroutines were "turned off" so that the data

could drive the covariance matrix calculations. For instance,

the eigenvalue/observability check routine was not needed

I since the covariance matrix was now invertible -- the slant

l 5b
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range was now defined. Data partial derivatives were not

required between collections. Hence that routine was bypas-

sed until the first data point of the next set was reached.

The entire four data sets were fit using the nominal

Gaussian standard deviations listed in the sensor specifica-

tions. As expected, the semi-major axis error dropped signif-

icantly to within 4 km. The error for the remainder of the

elements also was reduced, but not to the extent as the semi-

major axis error. Figure 14 and Figure 15 show the multiple

day event data fit residuals. Note the end of each data set

* after careful inspection of the plots.

Table III lists the derived classical element set and the

I respective element errors. Any element which involves veloci-

ty in its computation (i.e. eccentricity, argument of perigee,

mean anomaly and semi-major axis) has a higher uncertainty

than the pure position derived elements (ascending node and

inclination) since error is extremely sensitive to changes in

* position derivatives.

Once the data was fit, the obtained fastwalker state

vector was propagated to find the range at the nadir crossing

I for each of the four days, shown in Table IV. The target

appeared to have drifted approximately 40 km further from the

sensor each day for two days and then stopped. This effect

was due to the relative changes in the orbit between the

sensor and target since the eccentricity is not exactly zero.
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I
Table III Derived Multiple Day Event Results

Semi-major Axis, a 42167.15 km a = 3.6 km
Eccentricity, e .00298 a = .000213
Inclination, i 5.6640 a = .000305°
Ascending Node, n 70.5660 a = .000746°
Argument of Perigee, c 316.8000 a = .0198°
Mean Anomaly, M 96.489° a = .002810

Azimuth
Mean: 8.17632E-7 RMS: 4.96381E-5 a: 4.99205E-5

Elevation
Mean: 5.61084E-7 RMS: 1.17450E-5 a: 1.20884E-5

I
STable IV Multiple Day Event Nadir Crossing Ranges

I Day 0: 79.0 km Day 2: 176.2 km

Day 1: 130 km Day 3: 180.4 km

I
I
I
I
I
I
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VI. Summary and C l ns

Fastwalker orbit determination cannot be performed with

a single data set. Multiple simultaneous collections by

different sensors or another sighting by the same sensor on

a different day is required to deter-mine the orbital element

set with any certainty. Hence any future occurrences with

other qensors cannot be computed accurately since errors are

also •pagated along with the state.

A near-perfect estimate of the sensor position and veloc-

ity is required so any errors contributed to the results will

be due t, the data and not the ephemeris. This is accom-

plished by assuming the first ephemeris position point is

known and fitting the remainder of the position ephemerides

by estimating the velocity. This adds confidence to the

propagated state vector when fitting multiple day collections.

The Gauss method provides a good initial orbit provided

the data does not have any biases (zero mean), especially

since the method assumes perfect data. Hence, no error sta-o

tistics are associated with the elements. Once the eighth-

I order polynomial is factored, the method occasionally produces

possible target ranges where the target would not be detected

due to the lower reflected sunlight intensity level or a

negative range meaning the target is behind the sensor. These

outputs are naturally impossible and the method fails. The
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method does however provide a relationship between the target

position and velocity vectors as a function of range.

Since the target is essentially coplanar with the sensor,

the range is the difference in the target semi-major axis from

the sensor. Unfortunately, the least observable eigenvector

derived from the covariance matrix is along the line of sight

indicating that any range will fit the azimuth and elevation

data equally well. The least confident element is the semi-

major axis; its error increases as a function of P . The

balance of the element errors, whether they be classical or

equinoctial, increase at a much slower rate. For data sets

with n, - tro mean, the remainder of the elements are confi-

Cdently known when the target is within 100 km. Otherwise the

errors grow almost as fast as the semi-major axis error.

Multiple sightings on different days require a relatively

small integration step if two body motion is to be used for

propagating the sensor and initial fastwalker state vectors.

3 The semi-major axis error is significantly reduced with each

additional data set. Once two data sets are fit (which is a

I ~chore in an~d of itself), the thIrd and later sets become

easier to analyze since the epoch estimate is more refined.

The major problem is finding a range which will produce an

3 orbit consistent with the second data set. Perturbations do

not play a major role since thesa effects are insignificant

I over the time period of the analyzed events and they are also
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absorbed in the data noise. Though the data residuals still

have trends, the RMS values are acceptible given the bias

problems.

Care must be taken to ensure that the same object is

being tracked else many hours will be wasted. This is done

by comparing intensity history patterns of various detected

objects. The intensity level is not important since it is a

function of the materials used to build the target, location

of the sun at the time of collection, target attitude with

respect to the sensor and other effects in addition to dis-

tance from the sensor. Only the specular pattern is important

since most of the satellites in geosynchronous orbit are

spinners with despun shelves. This pattern gives the analyst

an idea of the target shape and the spin rate. It is similar

to a fingerprint -- an identifying trait which discerns one

object from another.
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VII. Recommendations

The topic of this thesis has not been deeply investigated

by many analysts within the space and intelligence community.

It is only recently that fastwalker analysis has become an

important issue due to an ever increasing number of geosyn-

chronous satellites and the inability to track and catalog

I these objects with ground-based sensors. Therefore inany

related topics are available for research.

The main hurdle to overcome with fastwalker analysis with

a single data set is the range ambiguity. Rederiving the

Gauss orbit determination method to include state vector error

statistics will be able to provide the estimator information

about what it is calculating. Since the direction cosine

vectors are fit with a least squares polynomial, there is some

error information present which could be related to the ini-

tial state estimate from the Gauss algorithm. It is possible

to transform these error statistics into some type of a-priori

covariance matrix which in turn can be added to the least

squares covariance matrix. This will control the estimation

process iteration and reduce the need to decompose the least

squares covariance matrix.

Secondly, devising a method to remove biases from the

data will help allow the Gauss method to perform better with

the given data thus providing a more confident initial state
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vector to the estimator. This can be combined with the above

recommendation to again furnish the estimator with error

statistics about what it is receiving.

3 Lastly, one can perform intensity history profile compar-

isons to determine when the same object is detected by two

orbiting sensors in different locations. This will involve

perturbation theory and propagating state vectors (or orbital

elements) over long time periods and then fit two or more data

sets. Accurate propagation models using the HAMING integrator

will be required (19:B-12).

I
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Appendix: Covariance Matrices for Events A and B

The following matrices are typical single data set event

covariance matrices. Each matrix is for a specific event and

the matrix elements are functions of range and how well the

data was fit. The given ranges were derived by the Gauss

algorithm. Read the elements from left to right and top to

bottom as follows: a, h, k, A0, p, q (i.e. P,, is the partial

derivative of h with respect to k).

Event A Eguinoctial Element Covariance Matrix at t __k

0.46298E+00 0.36882E-03 0.60340E-03 0.41122E-04 0.12580E-02 0.11407E-02

O.36882E-03 0.29422E-06 0.48127E-06 0.32800E-07 0.10034E-05 0.90989E-06

O.60340E-03 0.48127E-06 0.78739E-06 0.53660E-07 0.16415E-05 O.14885E-05

0.41122E-04 0.32800E-07 0.53660E-07 0.36570E-08 0.11187E-06 0.I0144E-06

0.12580E-02 0.10034E-05 0.16415E-05 0.11187E-06 0.34222E-05 0.31032E-05

0.11407E-02 0.90989E-06 0.14885E-05 0.10144E-06 0.31032E-05 0.28140E-05

Event B Equinoctial Element Covariance Matrix at t•., = 425km

0.20772E+07 0.87512E+01 0.58293E+01 0.32037E+01 0.21847E+02-O.56257E+02

0.87512E+01 0.37038E-04 0.24631E-04 0.13496E-04 0.92037E-04-O.23700E-03

0.58293E+01 0.24631E-04 0.16394E-04 0.89899E-05 0.61306E-04-0.15787E-03

0.32037E+01 0.13496E-04 0.89899E-05 0.49410E-05 0.33694E-04-0.86766E-04

0.21847E+02 0.92037E-04 0.61306E-04 0.33694E-04 0.22977E-O3-0.59168E-03

-0.56257E+02-O.23700E-03-O.15787E-03-O.86766E-04-O.59168E-03 O.15236E-02
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